Araştırma Makalesi
BibTex RIS Kaynak Göster

Entegre miRNA/mRNA düzenleyici ağ analizi ile Glioblastomda temozolomid direnç faktörlerinin belirlenmesi

Yıl 2023, Cilt: 6 Sayı: 3, 73 - 83, 30.12.2023
https://doi.org/10.33713/egetbd.1400022

Öz

Glioblastoma (GBM), nöroglial kök hücrelerden gelişen ve oldukça heterojen bir neoplazm grubunu temsil eden agresif bir beyin tümörüdür. Bu tümörler ağırlıklı olarak kasvetli bir prognoz ve kötü yaşam kalitesi ile ilişkilidir. Glioblastomalı hastalar için yeni ve etkili tedavi stratejileri geliştirmedeki büyük ilerlemelere rağmen, çoklu ilaç direncinin (MDR) tedavi başarısızlığının ana nedeni olduğu düşünülmektedir. MDR taşıyıcılarının yukarı regülasyonu, ilaç metabolizmasındaki değişiklikler, apoptozun düzensizliği, DNA onarımındaki kusurlar, kanser kök hücreleri ve epitelyal-mezenkimal geçiş dahil olmak üzere GBM'deki MDR'ye çeşitli mekanizmalar katkıda bulunur. Temozolomid (TMZ), glioblastoma multiforme (GBM) ve astrositomları tedavi etmek için kullanılan oral alkilleyici bir ajandır. Ancak TMZ ile tedavi edilen hastaların en az %50'si TMZ'ye yanıt vermemektedir. MikroRNA'lar (miRNA'lar), glioblastomada MDR'ye neden olan mekanizmalar dahil olmak üzere çeşitli hücre olaylarına katılan geniş bir endojen RNA sınıfıdır. Bu çalışmada, glioblastomada TMZ’ye direncin altında yatan mekanizmaların düzenlenmesinde miRNA'ların rolü araştırılmıştır.

Kaynakça

  • Thakkar JP, Dolecek TA, Horbinski C, et al. Epidemiologic and molecular prognostic review of glioblastoma. Cancer Epidemiol Biomarkers Prev 2014;23:1985-96.
  • Ostrom QT, Gittleman H, Farah P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2006-2010. Neuro Oncol 2013;15.
  • Nicholas MK. Glioblastoma multiforme: evidence-based approach to therapy. Expert Rev Anticancer Ther 2007;7:S23-7.
  • Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell 2009;136:215-33.
  • Shukla GC, Singh J, Barik S. MicroRNAs: processing, maturation, target recognition and regulatory functions. Mol Cell Pharmacol 2011;3:83-92.
  • Luo JW, Wang X, Yang Y, et al. Role of micro-RNA (miRNA) in pathogenesis of glioblastoma. Eur Rev Med Pharmacol Sci 2015;19:1630-9.
  • Chou CH, Shrestha S, Yang CD, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Res 2018;46:D296-302.
  • Karadağ Gürel A, Gürel S. To detect potential pathways and target genes in infantile Pompe patients using computational analysis. Bioimpacts. 2022;12(2):89-105. doi: 10.34172/bi.2022.23467. Epub 2022 Jan 22. PMID: 35411297; PMCID: PMC8905584.
  • KARADAĞ A, GÜREL S (August 1, 2022) Pediatrik Obezite ile İlişkili Anahtar Genlerin ve Yolakların Tanımlanması. Ege Tıp Bilimleri Dergisi 5 2 51–57.
  • Gürel AK, Gürel S. Identification of novel potential molecular targets associated with pediatric septic shock by integrated bioinformatics analysis and validation of in vitro septic shock model. J Surg Med. 2022;6(12):932-938.
  • Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4:44-57.
  • Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 2015;43:D447-52.
  • Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13:2498-504.
  • Sun Q, Dong H, Li Y, Yuan Fe, Xu Y, Mao S, Xiong X, Chen Q, Liu B. Small GTPase RHOE/RND3, a new critical regulator of NF‐κB signalling in glioblastoma multiforme? Cell Prolif. 2019; 52(5):e12665.
  • Yuan Y, Li J, Xiang W, Liu Y, Mao Q. Analyzing the interactions of mRNAs, miRNAs, lncRNAs and circRNAs to predict competing endogenous RNA networks in glioblastoma. J Neurooncol. 2018;137(3):493–502.
  • Malzkorn, B., M. Wolter, F. Liesenberg, M. Grzendowski, K. Stuhler, H. E. Meyer, et al. 2010. Identification and functional characterization of microRNAs involved in the malignant progression of gliomas. Brain Pathol. 20: 539–550.
  • Munoz, J. L., S. A. Bliss, S. J. Greco, S. H. Ramkissoon, K. L. Ligon, and P. Rameshwar. 2013. Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Mol. Ther. Nucleic Acids 2: e126.
  • Jeon, H. M., Y. W. Sohn, S. Y. Oh, S. H. Kim, S. Beck, S. Kim, et al. 2011. ID4 imparts chemoresistance and cancer stemness to glioma cells by derepressing miR-9*-mediated suppression of SOX2. Cancer Res. 71: 3410–3421.
  • Schraivogel, D., L. Weinmann, D. Beier, G. Tabatabai, A. Eichner, J. Y. Zhu, et al. 2011. CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J. 30: 4309–4322.
  • Zhu, X.,P., Mou K. J., Xu O.F.. et.al. Microarray analysis of the aberrant microRNA expression pattern in gliomas of different grades ONCOLOGY REPORTS 34: 318-324, 2015.
  • Shi Y, Zhang B, Zhu J, Huang W, Han B, Wang Q, Qi C, Wang M, Liu F. miR-106b-5p Inhibits IRF1/IFN-β Signaling to Promote M2 Macrophage Polarization of Glioblastoma. Onco Targets Ther. 2020 Jul 30;13:7479-7492.
  • Aldaz, B. et al. Involvement of miRNAs in the differentiation of human glioblastoma multiforme stem-like cells. PloS One 8, e77098 (2013).
  • Brett, J. O., Renault, V. M., Rafalski, V. A., Webb, A. E. & Brunet, A. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging 3, 108–124 (2011).
  • Gruszka R., Zakrzewska M. The Oncogenic Relevance of miR-17-92 Cluster and Its Paralogous miR-106b-25 and miR-106a-363 Clusters in Brain Tumors. Int. J. Mol. Sci. 2018;19:879.
  • Ernst A., Campos B., Meier J., Devens F., Liesenberg F., Wolter M., Reifenberger G., Herold-Mende C., Lichter P., Radlwimmer B. De-repression of CTGF via the miR-17-92 cluster upon differentiation of human glioblastoma spheroid cultures. Oncogene. 2010;29:3411–3422.
  • Schraivogel D., Weinmann L., Beier D., Tabatabai G., Eichner A., Zhu J.Y., Anton M., Sixt M., Weller M., Beier C.P., et al. CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J. 2011;30:4309–4322.
  • Li H., Yang B.B. Stress response of glioblastoma cells mediated by miR-17-5p targeting PTEN and the passenger strand miR-17-3p targeting MDM2. Oncotarget. 2012;3:1653–1668. doi: 10.18632/oncotarget.810.
  • Khordadmehr, M.; Shahbazi, R.; Sadreddini, S.; Baradaran, B. MiR-193: A New Weapon against Cancer. J. Cell. Physiol. 2019, 234, 16861–16872.
  • Zhong, Q.; Wang, T.; Lu, P.; Zhang, R.; Zou, J.; Yuan, S. MiR-193b Promotes Cell Proliferation by Targeting Smad3 in Human Glioma. J. Neurosci. Res. 2014, 92, 619–626.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Biyokimya ve Hücre Biyolojisi (Diğer)
Bölüm Orijinal Araştırma
Yazarlar

Yalda Hekmatshoar 0000-0003-4683-074X

Aynur Karadağ Gürel 0000-0002-5499-5168

Yayımlanma Tarihi 30 Aralık 2023
Gönderilme Tarihi 4 Aralık 2023
Kabul Tarihi 27 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Cilt: 6 Sayı: 3

Kaynak Göster

EndNote Hekmatshoar Y, Karadağ Gürel A (01 Aralık 2023) Entegre miRNA/mRNA düzenleyici ağ analizi ile Glioblastomda temozolomid direnç faktörlerinin belirlenmesi. Ege Tıp Bilimleri Dergisi 6 3 73–83.

Creative Commons Lisansı


Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.


13425                13428            13426            13433            13427