Araştırma Makalesi
BibTex RIS Kaynak Göster

Compact Embedding Theorems for The Space of Functions with Wavelet Transform in Amalgam Spaces

Yıl 2021, , 568 - 572, 30.11.2021
https://doi.org/10.31590/ejosat.1009444

Öz

This paper is motivated to define the space 〖 A〗_s (W)_(ω,ϑ)^(p,q,r) (R) using the wavelet transform, and is also motivated to consider the inclusion and compact embedding theorems in this space.

Kaynakça

  • Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF, SIAM, Philadelphia.
  • Feichtinger, H.G. (1980). Banach convolution algebras of Wiener type, In: Proc. Conf. Functions, Series, Operators, Budapest. Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509-524.
  • Fischer, R.H. Gürkanlı, A.T. & Liu, T. S. (1996). On a family of weighted spaces, Math. Slovaca, 46, 1, 71-82.
  • Gasquet C. & Witomski, P. (1999). Fourier Analysis and Applications, Springer, New York.
  • Gröchenig, K. (2001). Foundations of Time-Frequency Analysis, Birkhauser, Boston
  • Gürkanlı, A.T. (2008). Compact embeddings of the spaces A_(w,ω)^p (R^d ), Taiwanese Journal of Mathematics, 12, 7, 1757-1767.
  • Heil, C. (2003). An introduction to weighted Wiener amalgams, In: Wavelets and Their Applications, pp. 183-216. Allied Publishers, New Delhi.
  • Kulak, Ö. & Gürkanlı, A.T. (2011). On function spaces with wavelet transform in L_ω^p (R^d×R^+ ), Hacettepe Journal of Mathematics and Statistics, 40, 2, 163 – 177.
  • Kulak Ö. & Gürkanlı, A.T. (2013). Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, Journal of Inequalities and Applications, 2013:259.
  • Kulak Ö. & Gürkanlı, A.T. (2014). Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, Journal of Inequalities and Applications, 2014:476
  • Mallat, S. (1998). A wavelet tour of signal processing, Academic Press, San Diego, CA.
  • Reiter, H. (1968). Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford.
  • Ünal C. & Aydın, İ. (2019). Compact embeddings on a subspace of weighted variable exponent Sobolev spaces, Advances in operator theory, 4, 2, 388-405.

Dalgacık Dönüşümleri Amalgam Uzaylarında Olan Fonksiyon Uzayları için Kompakt Gömülme Teoremleri

Yıl 2021, , 568 - 572, 30.11.2021
https://doi.org/10.31590/ejosat.1009444

Öz

Bu çalışma dalgacık dönüşümü kullanarak 〖 A〗_s (W)_(ω,ϑ)^(p,q,r) (R) uzayını tanımlamak ve ayrıca bu uzayda kapsama, kompakt gömülme teoremlerini incelemek için motive edilmiştir.

Kaynakça

  • Daubechies, I. (1992). Ten Lectures on Wavelets, CBMS-NSF, SIAM, Philadelphia.
  • Feichtinger, H.G. (1980). Banach convolution algebras of Wiener type, In: Proc. Conf. Functions, Series, Operators, Budapest. Colloq. Math. Soc. Janos Bolyai, vol. 35, pp. 509-524.
  • Fischer, R.H. Gürkanlı, A.T. & Liu, T. S. (1996). On a family of weighted spaces, Math. Slovaca, 46, 1, 71-82.
  • Gasquet C. & Witomski, P. (1999). Fourier Analysis and Applications, Springer, New York.
  • Gröchenig, K. (2001). Foundations of Time-Frequency Analysis, Birkhauser, Boston
  • Gürkanlı, A.T. (2008). Compact embeddings of the spaces A_(w,ω)^p (R^d ), Taiwanese Journal of Mathematics, 12, 7, 1757-1767.
  • Heil, C. (2003). An introduction to weighted Wiener amalgams, In: Wavelets and Their Applications, pp. 183-216. Allied Publishers, New Delhi.
  • Kulak, Ö. & Gürkanlı, A.T. (2011). On function spaces with wavelet transform in L_ω^p (R^d×R^+ ), Hacettepe Journal of Mathematics and Statistics, 40, 2, 163 – 177.
  • Kulak Ö. & Gürkanlı, A.T. (2013). Bilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spaces, Journal of Inequalities and Applications, 2013:259.
  • Kulak Ö. & Gürkanlı, A.T. (2014). Bilinear multipliers of weighted Wiener amalgam spaces and variable exponent Wiener amalgam spaces, Journal of Inequalities and Applications, 2014:476
  • Mallat, S. (1998). A wavelet tour of signal processing, Academic Press, San Diego, CA.
  • Reiter, H. (1968). Classical Harmonic Analysis and Locally Compact Group, Oxford Universty Pres, Oxford.
  • Ünal C. & Aydın, İ. (2019). Compact embeddings on a subspace of weighted variable exponent Sobolev spaces, Advances in operator theory, 4, 2, 388-405.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Öznur Kulak 0000-0003-1433-3159

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kulak, Ö. (2021). Compact Embedding Theorems for The Space of Functions with Wavelet Transform in Amalgam Spaces. Avrupa Bilim Ve Teknoloji Dergisi(28), 568-572. https://doi.org/10.31590/ejosat.1009444