Araştırma Makalesi
BibTex RIS Kaynak Göster

Renk Uzayı Dönüşümlerinin Sperm Morfolojisinin Sınıflandırma Performansına Etkisi

Yıl 2021, , 70 - 75, 01.12.2021
https://doi.org/10.31590/ejosat.1013341

Öz

Dünya Sağlık Örgütü'ne göre kısırlık; çiftlerin herhangi bir koruma olmaksızın bir yıl boyunca cinsel ilişkiye girmelerine rağmen gebeliğin oluşmama durumu olarak tanımlanır. Kısırlığın nedeni erkek ve/veya kadın faktörleri olabilir. Erkek faktörlerin teşhisinde, laboratuvar ortamında belirli koşullar altında sperm hücrelerinin analizi yapılır. Spermiyogram adı verilen analizde spermin morfolojik anormalliği, karakteristik motilitesi ve konsantrasyonu incelenir. Spermiogram testleri doktorlar tarafından manuel olarak yapılabileceği gibi bilgisayar destekli sperm analiz sistemleri kullanılarak da yapılabilmektedir. Görsel incelemenin kişiden kişiye farklı sonuçlar vermesi ve maliyetli olması nedeniyle bilgisayar destekli analizlerin önemi her geçen gün artmaktadır. Bu çalışmada, sperm morfolojisi için bilgisayar tabanlı bir analiz yaklaşımının sınıflandırma performansını artırmak için bir ön işleme adımı olarak farklı renk uzaylarının etkisi araştırılmıştır. Deneysel testlerde SMIDS, HuSHeM ve SCIAN-Morpho olarak kısaltılan üç sperm morfolojisi veri seti kullanılmıştır. Sperm görüntülerinin sınıflar arasındaki dengesiz dağılımı ve yetersiz veri nedeniyle veri setleri üzerinde veri artırma işlemi uygulanmıştır. Daha sonra, renk uzayının sınıflandırmadaki etkilerini gözlemlemek için veri setleri çok iyi bilinen iki renk uzayı olan LAB ve HSV formatlarına dönüştürülmüştür. Sınıflandırma modeli olarak MobileNetV2 kullanılmıştır. Renk uzaylarının etkilerini göstermek için sonuçlar, renk dönüşümünün uygulanmadığı daha önce yayınlanmış çalışma ile karşılaştırılmıştır. LAB ve HSV renk uzaylarında görüntülerin sınıflandırılması, aynı koşullar altında eğitilmiş RGB görüntülerinden daha iyi sonuçlar vermiştir. Renk uzayı dönüşümleri kullanılarak SMIDS, HuSHeM, SCIAN-Morpho veri setleri için sırasıyla %89, %85 ve %68 maksimum sınıflandırma doğruluğu elde edilmiştir.

Kaynakça

  • Agarwal, A., Mulgund, A., Hamada, A., & Chyatte, M. R. (2015). A unique view on male infertility around the globe. Reproductive biology and endocrinology, 13(1), 1-9.
  • Bora, D. J., Gupta, A. K., & Khan, F. A. (2015). Comparing the performance of L* A* B* and HSV color spaces with respect to color image segmentation. arXiv preprint arXiv:1506.01472.
  • Chang, V., Garcia, A., Hitschfeld, N., & Härtel, S. (2017). Gold-standard for computer-assisted morphological sperm analysis. Computers in biology and medicine, 83, 143-150.
  • Gallardo Bolaños, J. M., Miró Morán, Á., Balao da Silva, C. M., Morillo Rodríguez, A., Plaza Dávila, M., Aparicio, I. M., ... & Peña, F. J. (2012). Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration. PloS one, 7(1), e30688.
  • Ilhan, H. O., Serbes, G., & Aydin, N. (2019). Automatic directional masking technique for better sperm morphology segmentation and classification analysis. Electronics Letters, 55(5), 256-258.
  • Ilhan, H. O., Serbes, G., & Aydin, N. (2020a). Automated sperm morphology analysis approach using a directional masking technique. Computers in Biology and Medicine, 122, 103845.
  • Ilhan, H. O., Sigirci, I. O., Serbes, G., & Aydin, N. (2020b). A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Medical & biological engineering & computing, 58(5), 1047-1068.
  • Lee, J. G., Jun, S., Cho, Y. W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep learning in medical imaging: general overview. Korean journal of radiology, 18(4), 570-584.
  • MATLAB Version 9.8.0.1323502 (R2020a), The Mathworks, Inc., Natick, Massachusetts (2020)
  • Pillai, R. N., & McEleny, K. (2021). Management of male infertility. Obstetrics, Gynaecology & Reproductive Medicine.
  • Rijsselaere, T., Van Soom, A., Maes, D., & Nizanski, W. (2012). Computer‐assisted sperm analysis in dogs and cats: An update after 20 years. Reproduction in Domestic Animals, 47, 204-207.
  • Riordon, J., McCallum, C., & Sinton, D. (2019). Deep learning for the classification of human sperm. Computers in biology and medicine, 111, 103342.
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).
  • Shaker, F., Monadjemi, S. A., Alirezaie, J., & Naghsh-Nilchi, A. R. (2017). A dictionary learning approach for human sperm heads classification. Computers in biology and medicine, 91, 181-190.
  • Shi, X. D., Bi, H. J., Fu, H. L., Li, L. Y., Liu, D. K., & Li, J. M. (2011). Effect of low-dose fenvalerate on semen quality capacitation in adult mice. Chinese medical journal, 124(10), 1529-1533.
  • Tortumlu, O. L., & Ilhan, H. O. (2020, November). The Analysis of Mobile Platform based CNN Networks in the Classification of Sperm Morphology. In 2020 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • Van der Merwe, F. H., Kruger, T. F., Oehninger, S. C., & Lombard, C. J. (2005). The use of semen parameters to identify the subfertile male in the general population. Gynecologic and obstetric investigation, 59(2), 86-91.
  • Xiang, Q., Wang, X., Li, R., Zhang, G., Lai, J., & Hu, Q. (2019, October). Fruit image classification based on Mobilenetv2 with transfer learning technique. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering (pp. 1-7).
  • Yüzkat, M., Ilhan, H. O., & Aydın, N. (2020, November). Morphological Classification of Low Quality Sperm Images Using Deep Learning Networks. In 2020 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • Yüzkat, M., Ilhan, H. O., & Aydin, N. (2021). Multi-Model CNN Fusion for Sperm Morphology Analysis. Computers in Biology and Medicine, 104790. https://doi.org/10.1016/j.compbiomed.2021.104790

Effects of Color Space Transformations on Classification Performance of Sperm Morphology

Yıl 2021, , 70 - 75, 01.12.2021
https://doi.org/10.31590/ejosat.1013341

Öz

Infertility is defined by the World Health Organization as the inability of a woman to become pregnant even though the couple had sexual intercourse for one year without any protection. Male and/or female factors might be the reasons for infertility. When diagnosing the male factors, sperm specimens are analyzed in a laboratory environment under certain conditions. The morphological abnormality, characteristic motility and concentration of sperm are examined in the analysis called spermiogram. Spermiogram tests can be done manually by doctors, as well as by using computer-assisted sperm analyzing systems. The importance of computer aided analysis is increasing day by day because visual inspection can give different results from person to person and is costly. In this study, the effect of different color spaces as a preprocessing step is investigated to increase the classification performance of a computer based analyzing approach for sperm morphology. Three sperm morphology data sets abbreviated as SMIDS, HuSHeM and SCIAN-Morpho were used in the experimental tests. Data augmentation was applied on the data sets due to the unbalanced distribution of sperm images among the classes and insufficient data. Then, data sets were converted to two well-known color spaces, LAB and HSV to observe the effects of color space in the classification. MobileNetV2 was utilized as the classification model. In order to indicate the effects of color spaces, results were compared with previously published study where no color transform was implemented. The classification of images in LAB and HSV color spaces had better results than RGB images trained under the same conditions. The maximum classification accuracies of 89%, 85% and 68% were obtained for SMIDS, HuSHeM, SCIAN-Morpho data sets by using the color space transform idea, respectively.

Kaynakça

  • Agarwal, A., Mulgund, A., Hamada, A., & Chyatte, M. R. (2015). A unique view on male infertility around the globe. Reproductive biology and endocrinology, 13(1), 1-9.
  • Bora, D. J., Gupta, A. K., & Khan, F. A. (2015). Comparing the performance of L* A* B* and HSV color spaces with respect to color image segmentation. arXiv preprint arXiv:1506.01472.
  • Chang, V., Garcia, A., Hitschfeld, N., & Härtel, S. (2017). Gold-standard for computer-assisted morphological sperm analysis. Computers in biology and medicine, 83, 143-150.
  • Gallardo Bolaños, J. M., Miró Morán, Á., Balao da Silva, C. M., Morillo Rodríguez, A., Plaza Dávila, M., Aparicio, I. M., ... & Peña, F. J. (2012). Autophagy and apoptosis have a role in the survival or death of stallion spermatozoa during conservation in refrigeration. PloS one, 7(1), e30688.
  • Ilhan, H. O., Serbes, G., & Aydin, N. (2019). Automatic directional masking technique for better sperm morphology segmentation and classification analysis. Electronics Letters, 55(5), 256-258.
  • Ilhan, H. O., Serbes, G., & Aydin, N. (2020a). Automated sperm morphology analysis approach using a directional masking technique. Computers in Biology and Medicine, 122, 103845.
  • Ilhan, H. O., Sigirci, I. O., Serbes, G., & Aydin, N. (2020b). A fully automated hybrid human sperm detection and classification system based on mobile-net and the performance comparison with conventional methods. Medical & biological engineering & computing, 58(5), 1047-1068.
  • Lee, J. G., Jun, S., Cho, Y. W., Lee, H., Kim, G. B., Seo, J. B., & Kim, N. (2017). Deep learning in medical imaging: general overview. Korean journal of radiology, 18(4), 570-584.
  • MATLAB Version 9.8.0.1323502 (R2020a), The Mathworks, Inc., Natick, Massachusetts (2020)
  • Pillai, R. N., & McEleny, K. (2021). Management of male infertility. Obstetrics, Gynaecology & Reproductive Medicine.
  • Rijsselaere, T., Van Soom, A., Maes, D., & Nizanski, W. (2012). Computer‐assisted sperm analysis in dogs and cats: An update after 20 years. Reproduction in Domestic Animals, 47, 204-207.
  • Riordon, J., McCallum, C., & Sinton, D. (2019). Deep learning for the classification of human sperm. Computers in biology and medicine, 111, 103342.
  • Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L. C. (2018). Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 4510-4520).
  • Shaker, F., Monadjemi, S. A., Alirezaie, J., & Naghsh-Nilchi, A. R. (2017). A dictionary learning approach for human sperm heads classification. Computers in biology and medicine, 91, 181-190.
  • Shi, X. D., Bi, H. J., Fu, H. L., Li, L. Y., Liu, D. K., & Li, J. M. (2011). Effect of low-dose fenvalerate on semen quality capacitation in adult mice. Chinese medical journal, 124(10), 1529-1533.
  • Tortumlu, O. L., & Ilhan, H. O. (2020, November). The Analysis of Mobile Platform based CNN Networks in the Classification of Sperm Morphology. In 2020 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • Van der Merwe, F. H., Kruger, T. F., Oehninger, S. C., & Lombard, C. J. (2005). The use of semen parameters to identify the subfertile male in the general population. Gynecologic and obstetric investigation, 59(2), 86-91.
  • Xiang, Q., Wang, X., Li, R., Zhang, G., Lai, J., & Hu, Q. (2019, October). Fruit image classification based on Mobilenetv2 with transfer learning technique. In Proceedings of the 3rd International Conference on Computer Science and Application Engineering (pp. 1-7).
  • Yüzkat, M., Ilhan, H. O., & Aydın, N. (2020, November). Morphological Classification of Low Quality Sperm Images Using Deep Learning Networks. In 2020 Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
  • Yüzkat, M., Ilhan, H. O., & Aydin, N. (2021). Multi-Model CNN Fusion for Sperm Morphology Analysis. Computers in Biology and Medicine, 104790. https://doi.org/10.1016/j.compbiomed.2021.104790
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mecit Yüzkat 0000-0003-4808-5181

Hamza O.ilhan Bu kişi benim 0000-0002-1753-2703

Nizamettin Aydın 0000-0003-0022-2247

Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yüzkat, M., O.ilhan, H., & Aydın, N. (2021). Effects of Color Space Transformations on Classification Performance of Sperm Morphology. Avrupa Bilim Ve Teknoloji Dergisi(29), 70-75. https://doi.org/10.31590/ejosat.1013341