Araştırma Makalesi
BibTex RIS Kaynak Göster

PEM Yakıt Hücresi Akış Alanlarının Üç Boyutlu Modellenmesi

Yıl 2021, , 65 - 69, 01.12.2021
https://doi.org/10.31590/ejosat.1017474

Öz

Polimer elektrolit membran (PEM) yakıt hücreleri, çevre dostu olmaları, yüksek enerji verimlilikleri gibi avantajları sebebiyle gelecekte içten yanmalı motorlara alternatif olarak gösterilmektedir. PEM yakıt hücrelerinde bipolar plakalar üzerinde yer alan gaz akış kanalları, reaktant gazların hücre aktif alanı üzerinde dolaştırılmasını ve elektrokimyasal reaksiyonlar sonucunda oluşan suyu hücreden atılmasını sağlamaktadır. Akış kanal tasarımı yakıt hücresi performansı açısından önemli bir yere sahiptir ve bu konuda literatürde birçok çalışma yer almaktadır. Bu çalışmada reaktant gaz dağılımının daha homojen olduğu ve su tahliye kabiliyetinin daha iyi olduğu bir akış kanal tasarımı geliştirilmeye çalışılmıştır. Bu kapsamda doğadan esinlenerek bir yaprak tasarım ve murray kanununa göre oluşturulan yaprak tasarım modelleri literatürde sıkça karşılaşmakta olduğumuz serpantin tasarım modeli ile karşılaştırılmıştır. Yapılan çalışma Ansys FLUENT programı kullanılarak Hesaplamalı Akışkanlar Dinamiği (HAD) yöntemi ile gerçekleştirilmiştir. Çalışmada 4 cm2 aktif alana sahip olan yakıt hücresi modelleri için analizler gerçekleştirilerek sonuçlar incelenmiştir. Hücre içerisindeki aktif alan üzerindeki akım yoğunluğu ve reaksiyon sonucu oluşan suyun membran ve katot kanallarındaki dağılımları incelenmiştir. Oluşturulan bu üç tasarımın düşük akım yoğunluklarında yaklaşık olarak aynı performanslara sahip oldukları görülmüştür. Murray kanununa göre oluşturulan yaprak tasarımın 0,8 mA/cm2 gibi yüksek akım yoğunluklarında daha iyi performans gösterdiği görülmüştür. Buradan murray kanununa göre oluşturulan bu yaprak tasarımın su tahliye kabiliyetinin daha iyi olduğu sonucuna varılmıştır. Aynı zamanda akış kanal uzunluğunun büyük olmasının hücre performansını kötü yönde etkilediği görülmüştür. Bu çalışmada akış kanal optimizasyonunun PEM yakıt hücrelerinin yüksek akım yoğunluğu değerlerinde su yönetiminin iyileştirilerek konsantrasyon kayıplarının azaltılmasıyla performanslarının artacağını göstermiştir.

Kaynakça

  • Anyanwu, I. S., Hou, Y., Xi, F., Wang, X., Yin, Y., Du, Q., & Jiao, K. (2019). Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. International Journal of Hydrogen Energy, 44(26), 13807-13819. https://doi.org/10.1016/j.ijhydene.2019.03.213
  • Azarafza, A., Ismail, M. S., Rezakazemi, M., & Pourkashanian, M. (2019). Comparative study of conventional and unconventional designs of cathode flow fields in PEM fuel cell. Renewable and Sustainable Energy Reviews, 116, 109420. https://doi.org/10.1016/j.rser.2019.109420
  • Bao, Z., Niu, Z., & Jiao, K. (2020). Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells. Applied Energy, 280, 116011. https://doi.org/10.1016/j.apenergy.2020.116011
  • Chang, D.-H., & Wu, S.-Y. (2015). The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields. International Journal of Hydrogen Energy, 40(35), 11659-11667. https://doi.org/10.1016/j.ijhydene.2015.04.153
  • Cooper, N. J., Smith, T., Santamaria, A. D., & Park, J. W. (2016). Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry. International Journal of Hydrogen Energy, 41(2), 1213-1223. https://doi.org/10.1016/j.ijhydene.2015.11.153
  • Ghasabehi, M., Ashrafi, M., & Shams, M. (2021). Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using multiphysics simulation. Fuel, 285, 119194. https://doi.org/10.1016/j.fuel.2020.119194
  • Heidary, H., Kermani, M. J., Prasad, A. K., Advani, S. G., & Dabir, B. (2017). Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2265-2277. https://doi.org/10.1016/j.ijhydene.2016.10.076
  • Lim, K., Vaz, N., Lee, J., & Ju, H. (2020). Advantages and disadvantages of various cathode flow field designs for a polymer electrolyte membrane fuel cell. International Journal of Heat and Mass Transfer, 163, 120497. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120497
  • Liu, R., Zhou, W., Li, S., Li, F., & Ling, W. (2020). Performance improvement of proton exchange membrane fuel cells with compressed nickel foam as flow field structure. International Journal of Hydrogen Energy, 45(35), 17833-17843. https://doi.org/10.1016/j.ijhydene.2020.04.238
  • Shen, J., Tu, Z., & Chan, S. H. (2019). Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel. Applied Thermal Engineering, 149, 1408-1418. https://doi.org/10.1016/j.applthermaleng.2018.12.138
  • Wang, X.-D., Yan, W.-M., Duan, Y.-Y., Weng, F.-B., Jung, G.-B., & Lee, C.-Y. (2010). Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field. Energy Conversion and Management, 51(5), 959-968. https://doi.org/10.1016/j.enconman.2009.11.037
  • Wen, D., Yin, L., Piao, Z., Lu, C., Li, G., & Leng, Q. (2018). Performance investigation of proton exchange membrane fuel cell with intersectant flow field. International Journal of Heat and Mass Transfer, 121, 775-787. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.053
  • Zhang, G., Bao, Z., Xie, B., Wang, Y., & Jiao, K. (2021). Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field. International Journal of Hydrogen Energy, 46(3), 2978-2989. https://doi.org/10.1016/j.ijhydene.2020.05.263

Three-Dimensional Modeling of PEM Fuel Cell Flow Fields

Yıl 2021, , 65 - 69, 01.12.2021
https://doi.org/10.31590/ejosat.1017474

Öz

Polymer electrolyte membrane (PEM) fuel cells have begun to attract attention due to their advantages, such as high energy efficiency and less environmental pollution. Gas flow channels located on bipolar plates in PEM fuel cells allow the distribution of reactant gas and the removal of water formed as a result of electrochemical reactions from the cell. Flow channel design has an important place in terms of fuel cell performance, and many studies on this topic are included in the literature. In this study, an attempt was made to develop a flow channel design in which the reactant gas distribution is more homogeneous and the water discharge capability is better. In this regard, a leaf design inspired by nature and leaf design models created according to murray's law have been compared with the serpentine design model, which we often encounter in the literature. The study was carried out by Computational Fluid Dynamics (HAD) method using Ansys FLUENT program. In the study, the results were examined for fuel cell models with an active area of 4 cm2. Current density and the distribution of water formed as a result of the reaction in the membrane and cathode channels were studied. These three designs were found to have approximately the same performance at low current densities. The leaf design created by Murray's law was found to perform better at high current densities such as 0.8 mA/cm2. From here, it is concluded that this leaf design, created according to murray's law, has a better ability to drain water. At the same time, large flow channel length was found to have a bad effect on cell performance. In this study, flow channel optimization showed that PEM fuel cells would improve their performance by improving water management at high current density values and reducing concentration losses.

Kaynakça

  • Anyanwu, I. S., Hou, Y., Xi, F., Wang, X., Yin, Y., Du, Q., & Jiao, K. (2019). Comparative analysis of two-phase flow in sinusoidal channel of different geometric configurations with application to PEMFC. International Journal of Hydrogen Energy, 44(26), 13807-13819. https://doi.org/10.1016/j.ijhydene.2019.03.213
  • Azarafza, A., Ismail, M. S., Rezakazemi, M., & Pourkashanian, M. (2019). Comparative study of conventional and unconventional designs of cathode flow fields in PEM fuel cell. Renewable and Sustainable Energy Reviews, 116, 109420. https://doi.org/10.1016/j.rser.2019.109420
  • Bao, Z., Niu, Z., & Jiao, K. (2020). Gas distribution and droplet removal of metal foam flow field for proton exchange membrane fuel cells. Applied Energy, 280, 116011. https://doi.org/10.1016/j.apenergy.2020.116011
  • Chang, D.-H., & Wu, S.-Y. (2015). The effects of channel depth on the performance of miniature proton exchange membrane fuel cells with serpentine-type flow fields. International Journal of Hydrogen Energy, 40(35), 11659-11667. https://doi.org/10.1016/j.ijhydene.2015.04.153
  • Cooper, N. J., Smith, T., Santamaria, A. D., & Park, J. W. (2016). Experimental optimization of parallel and interdigitated PEMFC flow-field channel geometry. International Journal of Hydrogen Energy, 41(2), 1213-1223. https://doi.org/10.1016/j.ijhydene.2015.11.153
  • Ghasabehi, M., Ashrafi, M., & Shams, M. (2021). Performance analysis of an innovative parallel flow field design of proton exchange membrane fuel cells using multiphysics simulation. Fuel, 285, 119194. https://doi.org/10.1016/j.fuel.2020.119194
  • Heidary, H., Kermani, M. J., Prasad, A. K., Advani, S. G., & Dabir, B. (2017). Numerical modelling of in-line and staggered blockages in parallel flowfield channels of PEM fuel cells. International Journal of Hydrogen Energy, 42(4), 2265-2277. https://doi.org/10.1016/j.ijhydene.2016.10.076
  • Lim, K., Vaz, N., Lee, J., & Ju, H. (2020). Advantages and disadvantages of various cathode flow field designs for a polymer electrolyte membrane fuel cell. International Journal of Heat and Mass Transfer, 163, 120497. https://doi.org/10.1016/j.ijheatmasstransfer.2020.120497
  • Liu, R., Zhou, W., Li, S., Li, F., & Ling, W. (2020). Performance improvement of proton exchange membrane fuel cells with compressed nickel foam as flow field structure. International Journal of Hydrogen Energy, 45(35), 17833-17843. https://doi.org/10.1016/j.ijhydene.2020.04.238
  • Shen, J., Tu, Z., & Chan, S. H. (2019). Enhancement of mass transfer in a proton exchange membrane fuel cell with blockage in the flow channel. Applied Thermal Engineering, 149, 1408-1418. https://doi.org/10.1016/j.applthermaleng.2018.12.138
  • Wang, X.-D., Yan, W.-M., Duan, Y.-Y., Weng, F.-B., Jung, G.-B., & Lee, C.-Y. (2010). Numerical study on channel size effect for proton exchange membrane fuel cell with serpentine flow field. Energy Conversion and Management, 51(5), 959-968. https://doi.org/10.1016/j.enconman.2009.11.037
  • Wen, D., Yin, L., Piao, Z., Lu, C., Li, G., & Leng, Q. (2018). Performance investigation of proton exchange membrane fuel cell with intersectant flow field. International Journal of Heat and Mass Transfer, 121, 775-787. https://doi.org/10.1016/j.ijheatmasstransfer.2018.01.053
  • Zhang, G., Bao, Z., Xie, B., Wang, Y., & Jiao, K. (2021). Three-dimensional multi-phase simulation of PEM fuel cell considering the full morphology of metal foam flow field. International Journal of Hydrogen Energy, 46(3), 2978-2989. https://doi.org/10.1016/j.ijhydene.2020.05.263
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hüseyin Kahraman 0000-0003-3322-9904

İsmail Özgün 0000-0002-7829-6337

Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kahraman, H., & Özgün, İ. (2021). PEM Yakıt Hücresi Akış Alanlarının Üç Boyutlu Modellenmesi. Avrupa Bilim Ve Teknoloji Dergisi(29), 65-69. https://doi.org/10.31590/ejosat.1017474