Araştırma Makalesi
BibTex RIS Kaynak Göster

Güven Bölgesi Çerçevesi Tekniği ile MIMO Anten Dizisi Optimizasyonu ve SAR Hesaplaması

Yıl 2021, , 243 - 247, 01.12.2021
https://doi.org/10.31590/ejosat.1023275

Öz

Bu çalışmada, 5. nesil akıllı telefonlarda çoklu giriş çoklu çıkış (multiple-input multiple-output, MIMO) uygulamalar için 6 GHz altı spektrumda (LTE bantları 42/43 ve LTE bandı 46) çalışan bir anten dizisi optimize edilerek özgül soğurma oranı (Specific Absorbtion Rate, SAR) değerleri hesaplanmıştır. Güven bölgesi Çerçevesi Optimizasyonu (Trust Region Framework) kullanılarak anten yeniden boyutlandırılmıştır. Elde edilen yeni anten boyutlarıyla, -6 dB’deki bant genişlikleri, LTE 42/43 ve LTE 46 bant genişliklerine daha yakın değerlerle elde edilmiştir. S-parametrelerinde gerekli iyileştirmeler yapılan 10’lu anten dizisi ve hesaplamalı yetişkin erkek, yetişkin kadın ve çocuk modelleri kullanılarak, özgül soğurma oranı (Specific Absorbtion Rate, SAR) değerleri benzetimlerle hesaplanmış; yaş, cinsiyet ve doku kaynaklı farklılıklar belirlenmiştir. SAR hesaplamaları 3600 MHz ve 5537.5 MHz frekanslarında, her bir anten elemanı için ayrı ayrı gerçekleştirilerek, tüm kafa bölgesinde, beyin, deri ve kemik dokularında oluşan SAR değerlerinin karşılaştırması yapılmıştır. 3600 MHz frekansında tüm kafa bölgesinde oluşan en yüksek SAR(10g) değerleri sırasıyla çocuk, yetişkin erkek ve yetişkin kadın modelleri için 1.7 W/kg, 1.19 W/kg ve 0.39 W/kg olarak hesaplanmıştır. 5537.5 MHz frekansında ise, en yüksek SAR(10g) değeri yetişkin kadın ve erkek için 0.81 W/kg iken bu değer çocuk modeli için 0.67 W/kg’dır. Beyin, deri ve kemik dokuları için ise SAR(10g) değerleri sırasıyla 0.26-1.7 W/kg, 0.30-1.7 W/kg ve 0.39-1.7 W/kg arasında değişmektedir.

Kaynakça

  • Dong, J., Wang, S., & Mo, J. (2020). Design of a twelve-port mimo antenna system for multi-mode 4g/5g smartphone applications based on characteristic mode analysis. IEEE Access, 8, 90751-90759.
  • Koga, Y., Kai, M., Fujieda, K., & Egawa, H. (2016, September). Design of a low SAR multiband antenna for mobile applications. In 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 47-50). IEEE.
  • Kumar, D. R., Babu, G. V., Narayan, K. S., & Raju, N. (2021). Investigation of 10-port coupled fed slotted MIMO antenna system for 5G mobile handset. International Journal of Microwave and Wireless Technologies, 1-14.
  • Li, M. Y., Ban, Y. L., Xu, Z. Q., Guo, J., & Yu, Z. F. (2017). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160-6170.
  • Li, Y., Luo, Y., & Yang, G. (2018). Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones. IEEE access, 6, 28041-28053.
  • Parchin, N. O., Al-Yasir, Y. I. A., Ali, A. H., Elfergani, I., Noras, J. M., Rodriguez, J., & Abd-Alhameed, R. A. (2019). Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE access, 7, 15612-15622.
  • Sun, L., Feng, H., Li, Y., & Zhang, Z. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Transactions on Antennas and Propagation, 66(11), 6364-6369.
  • Takei, R., Nagaoka, T., Saito, K., Watanabe, S., & Takahashi, M. (2017). SAR variation due to exposure from a smartphone held at various positions near the torso. IEEE Transactions on Electromagnetic Compatibility, 59(2), 747-753.
  • Wong, K. L., & Lu, J. Y. (2015). 3.6‐GHz 10‐antenna array for MIMO operation in the smartphone. Microwave and Optical Technology Letters, 57(7), 1699-1704.
  • Wong, K. L., Lu, J. Y., Chen, L. Y., Li, W. Y., & Ban, Y. L. (2016). 8‐antenna and 16‐antenna arrays using the quad‐antenna linear array as a building block for the 3.5‐GHz LTE MIMO operation in the smartphone. Microwave and Optical Technology Letters, 58(1), 174-181.
  • Zhao, K., Zhang, S., Ying, Z., Bolin, T., & He, S. (2013). SAR study of different MIMO antenna designs for LTE application in smart mobile handsets. IEEE Transactions on Antennas and Propagation, 61(6), 3270-3279.
  • Zhao, X., Yeo, S. P., & Ong, L. C. (2018). Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. IEEE Transactions on Antennas and Propagation, 66(9), 4485-4495.
  • Zou, H., Li, Y., Sim, C. Y. D., & Yang, G. (2018). D esign of 8× 8 dual‐band MIMO antenna array for 5 G smartphone applications. International Journal of RF and Microwave Computer‐Aided Engineering, 28(9), e21420.

MIMO Antenna Array Optimization with Trust Region Framework Technique and SAR Calculation

Yıl 2021, , 243 - 247, 01.12.2021
https://doi.org/10.31590/ejosat.1023275

Öz

In this study, an antenna array operating in the sub-6 GHz spectrum (LTE bands 42/43 and LTE band 46) for multiple-input multiple- output (MIMO) applications on 5G smartphones was optimized and the specific absorption rate (SAR) values have been calculated. Antenna resized using Trust Region Framework Optimization. With the new antenna dimensions obtained, bandwidths at -6 dB were achieved with values closer to LTE 42/43 and LTE 46 bandwidths. The specific absorption rate (SAR) values were calculated using the antenna array whose s-parameters were optimized and computational adult male, adult female and child models through simulations; age, gender and tissue related differences were determined. SAR calculations were performed separately for each antenna element at 3600 MHz and 5537.5 MHz frequencies, and the SAR values in the entire head region, brain, skin and bone tissues were compared. The highest SAR(10g) values in the entire head region at 3600 MHz were calculated as 1.7 W/kg, 1.19 W/kg and 0.39 W/kg for the child, adult male and adult female models, respectively. At the frequency of 5537.5 MHz, the highest SAR(10g) value is 0.81 W/kg for adult men and women, while this value is 0.67 W/kg for the child model. The SAR(10g) values for brain, skin and bone tissues vary between 0.26-1.7 W/kg, 0.30-1.7 W/kg and 0.39-1.7 W/kg, respectively.

Kaynakça

  • Dong, J., Wang, S., & Mo, J. (2020). Design of a twelve-port mimo antenna system for multi-mode 4g/5g smartphone applications based on characteristic mode analysis. IEEE Access, 8, 90751-90759.
  • Koga, Y., Kai, M., Fujieda, K., & Egawa, H. (2016, September). Design of a low SAR multiband antenna for mobile applications. In 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 47-50). IEEE.
  • Kumar, D. R., Babu, G. V., Narayan, K. S., & Raju, N. (2021). Investigation of 10-port coupled fed slotted MIMO antenna system for 5G mobile handset. International Journal of Microwave and Wireless Technologies, 1-14.
  • Li, M. Y., Ban, Y. L., Xu, Z. Q., Guo, J., & Yu, Z. F. (2017). Tri-polarized 12-antenna MIMO array for future 5G smartphone applications. IEEE Access, 6, 6160-6170.
  • Li, Y., Luo, Y., & Yang, G. (2018). Multiband 10-antenna array for sub-6 GHz MIMO applications in 5-G smartphones. IEEE access, 6, 28041-28053.
  • Parchin, N. O., Al-Yasir, Y. I. A., Ali, A. H., Elfergani, I., Noras, J. M., Rodriguez, J., & Abd-Alhameed, R. A. (2019). Eight-element dual-polarized MIMO slot antenna system for 5G smartphone applications. IEEE access, 7, 15612-15622.
  • Sun, L., Feng, H., Li, Y., & Zhang, Z. (2018). Compact 5G MIMO mobile phone antennas with tightly arranged orthogonal-mode pairs. IEEE Transactions on Antennas and Propagation, 66(11), 6364-6369.
  • Takei, R., Nagaoka, T., Saito, K., Watanabe, S., & Takahashi, M. (2017). SAR variation due to exposure from a smartphone held at various positions near the torso. IEEE Transactions on Electromagnetic Compatibility, 59(2), 747-753.
  • Wong, K. L., & Lu, J. Y. (2015). 3.6‐GHz 10‐antenna array for MIMO operation in the smartphone. Microwave and Optical Technology Letters, 57(7), 1699-1704.
  • Wong, K. L., Lu, J. Y., Chen, L. Y., Li, W. Y., & Ban, Y. L. (2016). 8‐antenna and 16‐antenna arrays using the quad‐antenna linear array as a building block for the 3.5‐GHz LTE MIMO operation in the smartphone. Microwave and Optical Technology Letters, 58(1), 174-181.
  • Zhao, K., Zhang, S., Ying, Z., Bolin, T., & He, S. (2013). SAR study of different MIMO antenna designs for LTE application in smart mobile handsets. IEEE Transactions on Antennas and Propagation, 61(6), 3270-3279.
  • Zhao, X., Yeo, S. P., & Ong, L. C. (2018). Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform. IEEE Transactions on Antennas and Propagation, 66(9), 4485-4495.
  • Zou, H., Li, Y., Sim, C. Y. D., & Yang, G. (2018). D esign of 8× 8 dual‐band MIMO antenna array for 5 G smartphone applications. International Journal of RF and Microwave Computer‐Aided Engineering, 28(9), e21420.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Begüm Korunur Engiz 0000-0002-3905-1791

Ahmet Turgut 0000-0001-6729-0266

Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Korunur Engiz, B., & Turgut, A. (2021). Güven Bölgesi Çerçevesi Tekniği ile MIMO Anten Dizisi Optimizasyonu ve SAR Hesaplaması. Avrupa Bilim Ve Teknoloji Dergisi(29), 243-247. https://doi.org/10.31590/ejosat.1023275