Araştırma Makalesi
BibTex RIS Kaynak Göster

Betimleyici ve Metin Madenciliği Yöntemleri Kullanılarak Covid19 Konulu Eğitim Dergisi Yayınlarında Araştırma Eğilimleri Analizi: Ön Analiz

Yıl 2021, , 432 - 437, 01.12.2021
https://doi.org/10.31590/ejosat.1036109

Öz

Çalışma, eğitim alanındaki dergilerde yer alan Covid19 ile ilgili yapılan çalışmaların profilini ortaya çıkarmayı amaçlamıştır. Bu amaçla, Ocak 2020 ile Mayıs 2021 tarihleri arasında SCOPUS veri tabanı tarafından indekslenen 3039 dergi makalesini analiz etmek için olasılıksal konu modelleme ve betimsel analiz ile birlikte kullanılmıştır. Betimsel analiz kapsamında en çok atıf alan dergiler, en çok yayın yapan dergiler ve en çok yayın yapan ülkeler analiz edilmiştir. Olasılıksal konu modelleme aşamasınde ise; başlıklarında covid, corona, pandemi gibi anahtar kelimeler içeren yayınlardaki çalışma konularını belirlemek için ilgili belgelerin özetlerine Latent Dirichlet Tahsisi (LDA) algoritması uygulanmaktadır. Metin madenciliği sonuçları, eğitim alanındaki dergilerde covid19 ile ilgili çalışmaların profilini haritalayan 10 ana konuyu ortaya koymuştur. Bu çalışmada ön analiz sonucları verilmiştir.

Kaynakça

  • Atay, M., Eroğlu, Y., & Ulusam Seçkiner, S. (2021). Investigation of Breaking Points in the Airline Industry with Airline Optimization Studies Through Text Mining before the COVID-19 Pandemic. Transportation Research Record, 0361198120987238.
  • Bi, T., Liang, P., Tang, A., & Yang, C. (2018). A systematic mapping study on text analysis techniques in software architecture. Journal of Systems and Software, 144, 533-558.
  • Glowacki, E. M., Wilcox, G. B., & Glowacki, J. B. (2021). Identifying# addiction concerns on twitter during the COVID-19 pandemic: A text mining analysis. Substance abuse, 42(1), 39-46.
  • Isoaho, K., Gritsenko, D., & Mäkelä, E. (2021). Topic modeling and text analysis for qualitative policy research. Policy Studies Journal, 49(1), 300-324.
  • Kim, S., & Lee, W. S. (2019). Network text analysis of medical tourism in newspapers using text mining: The South Korea case. Tourism Management Perspectives, 31, 332-339.
  • Koh, J. X., & Liew, T. M. (2020). How loneliness is talked about in social media during COVID-19 pandemic: text mining of 4,492 Twitter feeds. Journal of psychiatric research.
  • Lyu, J. C., & Luli, G. K. (2021). Understanding the public discussion about the centers for disease control and prevention during the covid-19 pandemic using twitter data: Text mining analysis study. Journal of Medical Internet Research, 23(2)
  • Tworowski, D., Gorohovski, A., Mukherjee, S., Carmi, G., Levy, E., Detroja, R., ... & Frenkel-Morgenstern, M. (2021). COVID19 Drug Repository: text-mining the literature in search of putative COVID19 therapeutics. Nucleic acids research, 49(D1), D1113-D1121.
  • Yang, M. & Han, C. “Revealing industry challenge and business response to Covid-19: a text mining approach”, 2021.
  • Yang, S., & Zhang, H. (2018). Text mining of Twitter data using a latent Dirichlet allocation topic model and sentiment analysis. International Journal of Computer and Information Engineering, 12(7), 525-529.

Research Trends Analysis in Educational Journal Publications on Covid19 Using Descriptive and Text Mining Methods :Preliminary Analysis

Yıl 2021, , 432 - 437, 01.12.2021
https://doi.org/10.31590/ejosat.1036109

Öz

The study aims to reveal the studies' profile on covid19 in journals in the field of education. For this purpose, probabilistic topic modeling technique and decriptive analysis has been used to together to analyze 3039 journal articles that are indexed by the SCOPUS database between January 2020 and May 2021. Within the scope of decriptive analysis, the most cited journals, the most publishing journals, and the most publishing countries were analyzed. In probabilistic topic modeling stage, Latent Dirichlet allocation (LDA) algorithm which is a text mining method was applied to the abstracts of those extracted documents to identify topics in publications containing keywords such as covid, corona, pandemic in their titles. The results of text mining revealed 10 major topics mapping the the studies' profile on covid19 in journals in the field of education. In this study, preliminary analysis results were given.

Kaynakça

  • Atay, M., Eroğlu, Y., & Ulusam Seçkiner, S. (2021). Investigation of Breaking Points in the Airline Industry with Airline Optimization Studies Through Text Mining before the COVID-19 Pandemic. Transportation Research Record, 0361198120987238.
  • Bi, T., Liang, P., Tang, A., & Yang, C. (2018). A systematic mapping study on text analysis techniques in software architecture. Journal of Systems and Software, 144, 533-558.
  • Glowacki, E. M., Wilcox, G. B., & Glowacki, J. B. (2021). Identifying# addiction concerns on twitter during the COVID-19 pandemic: A text mining analysis. Substance abuse, 42(1), 39-46.
  • Isoaho, K., Gritsenko, D., & Mäkelä, E. (2021). Topic modeling and text analysis for qualitative policy research. Policy Studies Journal, 49(1), 300-324.
  • Kim, S., & Lee, W. S. (2019). Network text analysis of medical tourism in newspapers using text mining: The South Korea case. Tourism Management Perspectives, 31, 332-339.
  • Koh, J. X., & Liew, T. M. (2020). How loneliness is talked about in social media during COVID-19 pandemic: text mining of 4,492 Twitter feeds. Journal of psychiatric research.
  • Lyu, J. C., & Luli, G. K. (2021). Understanding the public discussion about the centers for disease control and prevention during the covid-19 pandemic using twitter data: Text mining analysis study. Journal of Medical Internet Research, 23(2)
  • Tworowski, D., Gorohovski, A., Mukherjee, S., Carmi, G., Levy, E., Detroja, R., ... & Frenkel-Morgenstern, M. (2021). COVID19 Drug Repository: text-mining the literature in search of putative COVID19 therapeutics. Nucleic acids research, 49(D1), D1113-D1121.
  • Yang, M. & Han, C. “Revealing industry challenge and business response to Covid-19: a text mining approach”, 2021.
  • Yang, S., & Zhang, H. (2018). Text mining of Twitter data using a latent Dirichlet allocation topic model and sentiment analysis. International Journal of Computer and Information Engineering, 12(7), 525-529.
Toplam 10 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Cansu Çiğdem Ekin 0000-0003-4838-9708

Mustafa Çakıcı Bu kişi benim

Egemen Şener Bu kişi benim

Sıla Türker Bu kişi benim

Sinem Altanlar Bu kişi benim

Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Ekin, C. Ç., Çakıcı, M., Şener, E., Türker, S., vd. (2021). Research Trends Analysis in Educational Journal Publications on Covid19 Using Descriptive and Text Mining Methods :Preliminary Analysis. Avrupa Bilim Ve Teknoloji Dergisi(29), 432-437. https://doi.org/10.31590/ejosat.1036109