Araştırma Makalesi
BibTex RIS Kaynak Göster

Silindirik Dielektrik Çubuğa Ait Kılavuzlanmış Modları ve Modların Adlandırılması

Yıl 2021, , 431 - 437, 31.12.2021
https://doi.org/10.31590/ejosat.1039317

Öz

Açık bir dalga kılavuzu yapısı iletken olmayan sınır koşulları nedeniyle, tüm manyetik ve elektrik alan bileşenleri sınır içinde ve kılavuzun dışında var olurlar. Bunun sonucu olarak açık dalga kılavuzu yapılarında kapalı dalga kılavuzlarında var olan TE ve TM modaları ile birlikte HE ve EH olarak adlandırılan hibrit modlar da var olurlar. Hibrit modlar, yapıya ait karakteristik eşitlikler siteminin veya bu sitemden üretilen bir kapalı fonksiyonun farklı köklerine karşı düşmeleri nedeniyle hangisinin HE ve hangisinin EH olarak adlandırılacağı cevaplanması gereken bir sorudur. Hibrit modların adlandırılmasında elektrik alanın boyuna bileşeninin göreceli katkısını veya manyetik alanın boyuna bileşeninin göreceli katkısını temel evrensel bir yaklaşım kabul görmüştür. Bu çalışmanın amacı modların adlandırılmasında kullanılan yöntemleri sunmak ve silindirik dielektrik çubuk dalga kılavuzuna ait kılavuzlanmış TE modlarını, TM modlarını ve hibrit modları elde etmektir. Yapıya ait hibrit modların adlandırılmasında kullanılan yöntem için sayısal sonuçlar elde edilerek şekiller üzerinde sunulmuştur. İlgili şekiller üzerinde hibrit modlar arasında işaret farklılığı olduğu gösterilmiştir. Sayısal hesaplamalar sonucu evrensel olarak EH11 modu olarak kabul edilen en düşük dereceli mod ile aynı işarete sahip tüm modlar HE olarak adlandırılmıştır. Tersi olarak da ilgili mod ile zıt işaretli olan tüm modlar ise EH olarak adlandırılmıştır.

Kaynakça

  • Balanis, C. A. (1989). Advanced engineering electromagnetics. Wiley.
  • Bruno, W. M., & Bridges, W. B. (1988). Flexible Dielectric Waveguides with Powder Cores. IEEE Transactions on Microwave Theory and Techniques, 36(5), 882–890. https://doi.org/10.1109/22.3608
  • Hirani, R. R., Pathak, S. K., Shah, S. N., & Sharma, D. K. (2018). Dispersion characteristics of dielectric tube waveguide loaded with plasma for leaky wave antenna application. AEU - International Journal of Electronics and Communications, 83, 123–130. https://doi.org/10.1016/j.aeue.2017.08.019
  • Hu, J., & Menyuk, C. R. (2009). Understanding leaky modes: Slab waveguide revisited. Optics InfoBase Conference Papers, 1(1), 58–106. https://doi.org/10.1364/aop.1.000058
  • Kelebekler, E. (2021a). An analysis of leaky hybrid modes depending on structural parameters in a circular dielectric rod. Frequenz, 75(9), 377–387. https://doi.org/10.1515/freq-2020-0189
  • Kelebekler, E. (2021b). Investigation of the Leaky-Wave Characteristics of a Cylindrical Dielectric Rod Using the Coefficient Matrix of the System of Characteristic Equations and Davidenko’s Method. Journal of Electromagnetic Engineering and Science, 21(3), 189–200. Retrieved from http://jees.kr/journal/view.php?doi=10.26866/jees.2021.3.r.26
  • Kim, K. Y., Tae, H., & Lee, J.-H. (2005). Leaky Dispersion Characteristics in Circular Dielectric Rod Using Davidenko’s Method. Journal of the Korea Electromagnetic Engineering Society, 5(2), 72–79.
  • Lahart, M. J. (1998). Analysis of a cylindrical dielectric waveguide with three regions by use of an invariant mode-definition parameter. Journal of the Optical Society of America A, 15(3), 727. https://doi.org/10.1364/josaa.15.000727
  • Lin, Y.-D., Sheen, J. wen, & Tzuang, C. C. (1996). Analysis and design of feeding structures for microstrip leaky wave antenna. IEEE Transactions on Microwave Theory and Techniques, 44(9), 1540–1547.
  • Morishita, K. (1983). Hybrid Modes in Circular Cylindrical Optical Fibers. IEEE Transactions on Microwave Theory and Techniques, 31(4), 344–350. https://doi.org/10.1109/TMTT.1983.1131495
  • Snitzer, E. (1961). Cylindrical Dielectric Waveguide Modes. Journal of the Optical Society of America, 51(5), 491–498. https://doi.org/10.1364/josa.51.000491
  • Xu, F., & Wu, K. (2013). Understanding Leaky-Wave Structures. IEEE Microwave Magazine, 14(5), 87–96.
  • Yeh, C., & Shimabukuro, F. I. (2008). The Essence of Dielectric Waveguides. In Springer. Springer.
  • Yeh, Chai. (1987). Guided-Wave modes in cylindrical optical fibers. IEEE Transactions on Education, E-30(1), 43–51. https://doi.org/10.1109/TE.1987.5570585
  • Zeng, X. Y., Xu, S. J., Wu, K., & Luk, K. M. (2002). Properties of guided modes on open structures near the cutoff region using a new version of complex effective dielectric constant. IEEE Transactions on Microwave Theory and Techniques, 50(5), 1417–1424. https://doi.org/10.1109/22.999157

Guided Modes of Cylindrical Dielectric Rod and Designation of Modes

Yıl 2021, , 431 - 437, 31.12.2021
https://doi.org/10.31590/ejosat.1039317

Öz

Due to nonconducting boundary condition of an open waveguide structure, all magnetic and electric field components exist both inside and outside the waveguide. As a result, hybrid modes called HE and EH exist in open waveguide structures, along with the TE and TM modes that exist in closed waveguides. The question has to be answered which one is designed HE and EH because hybrid modes correspond to different roots of the characteristic system of equations belonging to the structure or a closed function produced from this system. A universal approach, based on the relative contribution of the longitudinal component of the electric field or the relative contribution of the longitudinal component of the magnetic field, has been accepted to designate the hybrid modes. The aim of this study is to present the methods used in designation the modes and to obtain guided TE modes, TM modes and hybrid modes of cylindrical dielectric rod waveguide. Numerical results obtained for the method used in designation the hybrid modes of the structure presented on the figures. It is shown that there is a difference in sign between the hybrid modes on the figures. As a result of numerical calculations, all modes that have the same sign as the lowest-order mode, which is universally accepted as the EH11 mode, are named HE. Conversely, all modes with the opposite sign of the same mode are called EH.

Kaynakça

  • Balanis, C. A. (1989). Advanced engineering electromagnetics. Wiley.
  • Bruno, W. M., & Bridges, W. B. (1988). Flexible Dielectric Waveguides with Powder Cores. IEEE Transactions on Microwave Theory and Techniques, 36(5), 882–890. https://doi.org/10.1109/22.3608
  • Hirani, R. R., Pathak, S. K., Shah, S. N., & Sharma, D. K. (2018). Dispersion characteristics of dielectric tube waveguide loaded with plasma for leaky wave antenna application. AEU - International Journal of Electronics and Communications, 83, 123–130. https://doi.org/10.1016/j.aeue.2017.08.019
  • Hu, J., & Menyuk, C. R. (2009). Understanding leaky modes: Slab waveguide revisited. Optics InfoBase Conference Papers, 1(1), 58–106. https://doi.org/10.1364/aop.1.000058
  • Kelebekler, E. (2021a). An analysis of leaky hybrid modes depending on structural parameters in a circular dielectric rod. Frequenz, 75(9), 377–387. https://doi.org/10.1515/freq-2020-0189
  • Kelebekler, E. (2021b). Investigation of the Leaky-Wave Characteristics of a Cylindrical Dielectric Rod Using the Coefficient Matrix of the System of Characteristic Equations and Davidenko’s Method. Journal of Electromagnetic Engineering and Science, 21(3), 189–200. Retrieved from http://jees.kr/journal/view.php?doi=10.26866/jees.2021.3.r.26
  • Kim, K. Y., Tae, H., & Lee, J.-H. (2005). Leaky Dispersion Characteristics in Circular Dielectric Rod Using Davidenko’s Method. Journal of the Korea Electromagnetic Engineering Society, 5(2), 72–79.
  • Lahart, M. J. (1998). Analysis of a cylindrical dielectric waveguide with three regions by use of an invariant mode-definition parameter. Journal of the Optical Society of America A, 15(3), 727. https://doi.org/10.1364/josaa.15.000727
  • Lin, Y.-D., Sheen, J. wen, & Tzuang, C. C. (1996). Analysis and design of feeding structures for microstrip leaky wave antenna. IEEE Transactions on Microwave Theory and Techniques, 44(9), 1540–1547.
  • Morishita, K. (1983). Hybrid Modes in Circular Cylindrical Optical Fibers. IEEE Transactions on Microwave Theory and Techniques, 31(4), 344–350. https://doi.org/10.1109/TMTT.1983.1131495
  • Snitzer, E. (1961). Cylindrical Dielectric Waveguide Modes. Journal of the Optical Society of America, 51(5), 491–498. https://doi.org/10.1364/josa.51.000491
  • Xu, F., & Wu, K. (2013). Understanding Leaky-Wave Structures. IEEE Microwave Magazine, 14(5), 87–96.
  • Yeh, C., & Shimabukuro, F. I. (2008). The Essence of Dielectric Waveguides. In Springer. Springer.
  • Yeh, Chai. (1987). Guided-Wave modes in cylindrical optical fibers. IEEE Transactions on Education, E-30(1), 43–51. https://doi.org/10.1109/TE.1987.5570585
  • Zeng, X. Y., Xu, S. J., Wu, K., & Luk, K. M. (2002). Properties of guided modes on open structures near the cutoff region using a new version of complex effective dielectric constant. IEEE Transactions on Microwave Theory and Techniques, 50(5), 1417–1424. https://doi.org/10.1109/22.999157
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ersoy Kelebekler 0000-0002-9407-3926

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kelebekler, E. (2021). Silindirik Dielektrik Çubuğa Ait Kılavuzlanmış Modları ve Modların Adlandırılması. Avrupa Bilim Ve Teknoloji Dergisi(32), 431-437. https://doi.org/10.31590/ejosat.1039317