Araştırma Makalesi
BibTex RIS Kaynak Göster

Bağlama Öncesi Su Yüzeyi Profilinin Deneysel ve Sayısal Analizi

Yıl 2021, , 282 - 287, 31.12.2021
https://doi.org/10.31590/ejosat.1039504

Öz

Bu çalışmada, bağlama arkasında oluşan su yüzeyi profilinin deneysel ve sayısal olarak analizi gerçekleştirilmiştir. Deneyler, Dokuz Eylül Üniversitesi Hidrolik Laboratuvarı’nda bulunan ve eğimi değiştirilebilen açık kanal deney düzeneğinin mansap kısmına eşik konularak gerçekleştirilmiştir. Yapılan deneylere ait başlangıç koşulları kullanılarak tedrici değişken akımlar için su yüzeyinin diferansiyel denklemi Euler Yöntemi, Dördüncü Mertebeden Runge Kutta Yöntemi, Standart Adım Yöntemi, Doğrudan Adım Yöntemi ve Diferansiyel Kuadratur Yöntemi ile sayısal olarak çözülmüştür. Deneysel veriler kullanılarak farklı sayısal yöntemlerden elde edilen göreceli hatalar birbirleriyle karşılaştırılmış ve yöntemlerin doğrulukları irdelenmiştir.

Destekleyen Kurum

Dokuz Eylül Üniversitesi

Proje Numarası

2020.KB.FEN.027

Teşekkür

Bu çalışma, Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri kapsamında (Proje No: 2020.KB.FEN.027) desteklenmiştir. Dokuz Eylül Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü’ne teşekkür ederiz.

Kaynakça

  • Chaudry, M. H. (2008). Open channel flow. New York: Springer Science+Business Media.
  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.
  • Demirel, E. & Tozluk, H. (2002). Su yüzü profilinin Euler metodu ile sayısal çözümünde gerekli adım sayısının belirlenmesi. Osmangazi Üniversitesi Mühendislik ve Mimarlık Dergisi, 15 (1), 31-40.
  • Esfandiari, R. S. (2017). Numerical methods for engineers and scientists using MATLAB. Raton, Florida: CRC Press.
  • Henderson, F. M. (1966). Open channel flow, New York: MacMillan Company.
  • Kaya, B. (2010). Investigation of gradually varied flows using differential quadrature method. Scientific Research and Essays, 6 (13), 2630-2638.
  • Manning, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 10, 161-107.
  • Marcacuzco, J. A. M. & Vargas, E. P. (2019). Computation of Gradually Varied Flow by Fourth Order Runge-Kutta Method (SRK). Program adı: 38th IAHR World Congress.
  • Moglen, G. E. (2015). Fundamentals of open channel flow. Boca Raton, Florida: CRC Press.
  • Öztürkmen, G. (2008). Açık kanallarda su yüzü profilinin farklı hidrolik koşullar altında belirlenmesi (Yüksek Lisans Tezi). Ulusal Tez Merkezi’ nden alınmıştır. (Tez No:255030)
  • Paine, J. N. (1992). Open channel flow algorithm in Newton-Raphson form. Journal of Irrigation and Drainage Engineering, 118 (2), 306-319.
  • Qian, H., Zhong L., Bo X. & Zhenzhen, G. (2011). The research on calculation of water surface profile in channel by Runge - Kutta method. 2011 International Symposium on Water Resource and Environmental Protection, 408-412.
  • Quan, J. R. & Chang, C. T. (1989a). New insights in solving distributed system equations by the quadrature methods-I. Computational Chemical Engineering, 13, 779-788.
  • Shu, C. (2000). Differential quadrature and its application in engineering. London: Springer.
  • Zaghloul N. A. & Darwish A. Y. (1987). Solution of gradually varied flow problems using the direct step method the IBM Lotus 1-2-3 system, Environmental Software, 2 (4), 199-206.
  • Basha, A. (2009, Eylül). Experimental verification of gradually varied flow profile computation. Bildiri 6th International Conference on Environmental Hydrology’ de sunulmuştur, Kahire.Yayınlanmamış.

Numerical and Experimental Analysis of Water Surface Profile Back of The Regulator

Yıl 2021, , 282 - 287, 31.12.2021
https://doi.org/10.31590/ejosat.1039504

Öz

In this study, experimental and numerical analysis of the water surface profile formed back of the regulator was carried out. The experiments were performed by placing a threshold on the downstream part of the open channel experimental setup, which is located in Dokuz Eylul University Hydraulics Laboratory and whose slope can be changed. Using the initial conditions of the experiments, the differential equation of the water surface for the gradually varied flows was solved numerically by the Euler Method, the Fourth Order Runge Kutta Method, the Standart Step Method, the Direct Step Method, and the Differential Quadrature Method. By using experimental data, the relative errors obtained from different numerical methods were compared with each other and the accuracy of the methods was examined.

Proje Numarası

2020.KB.FEN.027

Kaynakça

  • Chaudry, M. H. (2008). Open channel flow. New York: Springer Science+Business Media.
  • Chow, V. T. (1959). Open channel hydraulics. New York: McGraw-Hill.
  • Demirel, E. & Tozluk, H. (2002). Su yüzü profilinin Euler metodu ile sayısal çözümünde gerekli adım sayısının belirlenmesi. Osmangazi Üniversitesi Mühendislik ve Mimarlık Dergisi, 15 (1), 31-40.
  • Esfandiari, R. S. (2017). Numerical methods for engineers and scientists using MATLAB. Raton, Florida: CRC Press.
  • Henderson, F. M. (1966). Open channel flow, New York: MacMillan Company.
  • Kaya, B. (2010). Investigation of gradually varied flows using differential quadrature method. Scientific Research and Essays, 6 (13), 2630-2638.
  • Manning, R. (1891). On the flow of water in open channels and pipes. Transactions of the Institution of Civil Engineers of Ireland, 10, 161-107.
  • Marcacuzco, J. A. M. & Vargas, E. P. (2019). Computation of Gradually Varied Flow by Fourth Order Runge-Kutta Method (SRK). Program adı: 38th IAHR World Congress.
  • Moglen, G. E. (2015). Fundamentals of open channel flow. Boca Raton, Florida: CRC Press.
  • Öztürkmen, G. (2008). Açık kanallarda su yüzü profilinin farklı hidrolik koşullar altında belirlenmesi (Yüksek Lisans Tezi). Ulusal Tez Merkezi’ nden alınmıştır. (Tez No:255030)
  • Paine, J. N. (1992). Open channel flow algorithm in Newton-Raphson form. Journal of Irrigation and Drainage Engineering, 118 (2), 306-319.
  • Qian, H., Zhong L., Bo X. & Zhenzhen, G. (2011). The research on calculation of water surface profile in channel by Runge - Kutta method. 2011 International Symposium on Water Resource and Environmental Protection, 408-412.
  • Quan, J. R. & Chang, C. T. (1989a). New insights in solving distributed system equations by the quadrature methods-I. Computational Chemical Engineering, 13, 779-788.
  • Shu, C. (2000). Differential quadrature and its application in engineering. London: Springer.
  • Zaghloul N. A. & Darwish A. Y. (1987). Solution of gradually varied flow problems using the direct step method the IBM Lotus 1-2-3 system, Environmental Software, 2 (4), 199-206.
  • Basha, A. (2009, Eylül). Experimental verification of gradually varied flow profile computation. Bildiri 6th International Conference on Environmental Hydrology’ de sunulmuştur, Kahire.Yayınlanmamış.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Oğuzhan Esatoğlu 0000-0002-5712-7147

Birol Kaya 0000-0002-7655-526X

Proje Numarası 2020.KB.FEN.027
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Esatoğlu, O., & Kaya, B. (2021). Bağlama Öncesi Su Yüzeyi Profilinin Deneysel ve Sayısal Analizi. Avrupa Bilim Ve Teknoloji Dergisi(32), 282-287. https://doi.org/10.31590/ejosat.1039504