Konferans Bildirisi
BibTex RIS Kaynak Göster

Yaygın kullanılan 3B baskı malzemelerinin mekanik, termo-mekanik ve tribolojik özelliklerinin karşılaştırmalı olarak incelenmesi

Yıl 2021, , 827 - 831, 31.12.2021
https://doi.org/10.31590/ejosat.1040085

Öz

Bu çalışmada, 3B (üç boyutlu) baskı teknolojisinde filaman malzemesi olarak en yaygın kullanılan PLA (poli laktik asit), ABS (akrilonitril bütadien stiren) ve PETG (polietilen tereftalat glikol) malzemelerinin çekme, termo-mekanik ve adhezif aşınma özelliklerinin karşılaştırmalı olarak incelenmesi amaçlanmıştır. Baskı prosesi, son kullanıcıların en çok tercih ettiği imalat parametreleri ve dilimleme yazılımının varsayılan olarak sunduğu seçenekler dikkate alınarak gerçekleştirilmiştir. Mekanik testler, malzemelerin camsı geçiş sıcaklıkları dikkate alınarak 25, 35 ve 45 °C olmak üzere üç farklı sıcaklıkta uygulanmıştır. Tribolojik özelliklerin belirlenmesi için numunelerin hem alt hem de üst yüzeyleri standart pin-on disk test cihazı kullanılarak adhezif aşınmaya maruz bırakılmıştır. Çekme testleri boyunca mekanik özelliklerin sıcaklıkla değişimi açısından en hassas malzemenin PLA, en kararlı malzemenin ise ABS olduğu gözlenmiştir. Numunelere DMTA (Dinamik Mekanik Termal Analiz) testleri uygulanarak depo modülü değerlerinin sıcaklıkla değişimi de incelenmiştir.

Kaynakça

  • Aguilera-Camacho, L. D., Hernández-Navarro, C., Moreno, K. J., García-Miranda, J. S., & Arizmendi-Morquecho, A. (2015). Improvement effects of CaO nanoparticles on tribological and microhardness properties of PMMA coating. Journal of Coatings Technology and Research, 12(2), 347–355. https://doi.org/10.1007/s11998-014-9639-y
  • Alafaghani, A., Qattawi, A., Alrawi, B., & Guzman, A. (2017). Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing, 10, 791–803. https://doi.org/10.1016/j.promfg.2017.07.079
  • Caminero, M. A., Chacón, J. M., García-Moreno, I., & Rodríguez, G. P. (2018). Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering, 148(April), 93–103. https://doi.org/10.1016/j.compositesb.2018.04.054
  • Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials and Design, 124, 143–157. https://doi.org/10.1016/j.matdes.2017.03.065
  • Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Harikrishnan, U., & Soundarapandian, S. (2018). Fused Deposition Modelling based Printing of Full Complement Bearings. Procedia Manufacturing, 26, 818–825. https://doi.org/10.1016/j.promfg.2018.07.102
  • Kane, S. R., Ashby, P. D., & Pruitt, L. A. (2010). Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements. Journal of Biomedical Materials Research - Part A, 92(4), 1500–1509. https://doi.org/10.1002/jbm.a.32484
  • Karsli, N. G., Demirkol, S., & Yilmaz, T. (2016). Thermal aging and reinforcement type effects on the tribological, thermal, thermomechanical, physical and morphological properties of poly(ether ether ketone) composites. Composites Part B: Engineering, 88, 253–263. https://doi.org/10.1016/j.compositesb.2015.11.013
  • Kousiatza, C., & Karalekas, D. (2016). In-situ monitoring of strain and temperature distributions during fused deposition modeling process. Materials and Design, 97, 400–406. https://doi.org/10.1016/j.matdes.2016.02.099
  • Mohan, N., Senthil, P., Vinodh, S., & Jayanth, N. (2017). A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual and Physical Prototyping, 12(1), 47–59. https://doi.org/10.1080/17452759.2016.1274490
  • Norm, D. E. (2002). Plastics-Determination of tensile properties - Norme ISO 527-3. 1107.
  • Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials and Design, 123, 154–164. https://doi.org/10.1016/j.matdes.2017.03.051
  • Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2), 72–80. https://doi.org/10.1108/13552540810862028
  • Tymrak, B. M., Kreiger, M., & Pearce, J. M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials and Design, 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038
  • Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials and Design, 102, 276–283. https://doi.org/10.1016/j.matdes.2016.04.045
  • Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., & Shan, C. (2016). Isotropic and anisotropic elasticity and yielding of 3D printed material. Composites Part B: Engineering, 99, 506–513. https://doi.org/10.1016/j.compositesb.2016.06.009

Comparative Investigation of Mechanical, Tribological and Thermo-Mechanical Properties of Commonly Used 3D Printing Materials

Yıl 2021, , 827 - 831, 31.12.2021
https://doi.org/10.31590/ejosat.1040085

Öz

In this study, it is aimed to comparatively examine tensile, thermomechanical, and adhesive wear properties of PLA (poly lactic acid), ABS (acrylonitrile butadiene styrene) and PETG (polyethylene terephthalate glycol) materials, which are the most widely used filament materials in 3D (three dimensional) printing technology. The printing process was carried out by considering the mostly preferred manufacturing parameters by the end users and the options offered by the slicing software by default. Mechanical tests were performed at three different temperatures, 25, 35 and 45 °C, according to the glass transition temperatures of the materials. Determination of tribological properties, both bottom and upper surfaces of the test samples were exposed to adhesive wear by using standard pin-on disc tester. During the tensile tests, it was observed that the most sensitive material in terms of the alteration of mechanical properties with temperature was PLA, and the most stable material was ABS. It was determined that there was a significant difference in wear volume for all tested materials, depending on whether the abraded surface was top or bottom. The variation of storage modulus values with temperature was also investigated by applying DMTA (Dynamic mechanic thermal analysis) tests to the samples.

Kaynakça

  • Aguilera-Camacho, L. D., Hernández-Navarro, C., Moreno, K. J., García-Miranda, J. S., & Arizmendi-Morquecho, A. (2015). Improvement effects of CaO nanoparticles on tribological and microhardness properties of PMMA coating. Journal of Coatings Technology and Research, 12(2), 347–355. https://doi.org/10.1007/s11998-014-9639-y
  • Alafaghani, A., Qattawi, A., Alrawi, B., & Guzman, A. (2017). Experimental Optimization of Fused Deposition Modelling Processing Parameters: A Design-for-Manufacturing Approach. Procedia Manufacturing, 10, 791–803. https://doi.org/10.1016/j.promfg.2017.07.079
  • Caminero, M. A., Chacón, J. M., García-Moreno, I., & Rodríguez, G. P. (2018). Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling. Composites Part B: Engineering, 148(April), 93–103. https://doi.org/10.1016/j.compositesb.2018.04.054
  • Chacón, J. M., Caminero, M. A., García-Plaza, E., & Núñez, P. J. (2017). Additive manufacturing of PLA structures using fused deposition modelling: Effect of process parameters on mechanical properties and their optimal selection. Materials and Design, 124, 143–157. https://doi.org/10.1016/j.matdes.2017.03.065
  • Dizon, J. R. C., Espera, A. H., Chen, Q., & Advincula, R. C. (2018). Mechanical characterization of 3D-printed polymers. Additive Manufacturing, 20, 44–67. https://doi.org/10.1016/j.addma.2017.12.002
  • Harikrishnan, U., & Soundarapandian, S. (2018). Fused Deposition Modelling based Printing of Full Complement Bearings. Procedia Manufacturing, 26, 818–825. https://doi.org/10.1016/j.promfg.2018.07.102
  • Kane, S. R., Ashby, P. D., & Pruitt, L. A. (2010). Characterization and tribology of PEG-like coatings on UHMWPE for total hip replacements. Journal of Biomedical Materials Research - Part A, 92(4), 1500–1509. https://doi.org/10.1002/jbm.a.32484
  • Karsli, N. G., Demirkol, S., & Yilmaz, T. (2016). Thermal aging and reinforcement type effects on the tribological, thermal, thermomechanical, physical and morphological properties of poly(ether ether ketone) composites. Composites Part B: Engineering, 88, 253–263. https://doi.org/10.1016/j.compositesb.2015.11.013
  • Kousiatza, C., & Karalekas, D. (2016). In-situ monitoring of strain and temperature distributions during fused deposition modeling process. Materials and Design, 97, 400–406. https://doi.org/10.1016/j.matdes.2016.02.099
  • Mohan, N., Senthil, P., Vinodh, S., & Jayanth, N. (2017). A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual and Physical Prototyping, 12(1), 47–59. https://doi.org/10.1080/17452759.2016.1274490
  • Norm, D. E. (2002). Plastics-Determination of tensile properties - Norme ISO 527-3. 1107.
  • Song, Y., Li, Y., Song, W., Yee, K., Lee, K. Y., & Tagarielli, V. L. (2017). Measurements of the mechanical response of unidirectional 3D-printed PLA. Materials and Design, 123, 154–164. https://doi.org/10.1016/j.matdes.2017.03.051
  • Sun, Q., Rizvi, G. M., Bellehumeur, C. T., & Gu, P. (2008). Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyping Journal, 14(2), 72–80. https://doi.org/10.1108/13552540810862028
  • Tymrak, B. M., Kreiger, M., & Pearce, J. M. (2014). Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions. Materials and Design, 58, 242–246. https://doi.org/10.1016/j.matdes.2014.02.038
  • Weng, Z., Wang, J., Senthil, T., & Wu, L. (2016). Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing. Materials and Design, 102, 276–283. https://doi.org/10.1016/j.matdes.2016.04.045
  • Zou, R., Xia, Y., Liu, S., Hu, P., Hou, W., Hu, Q., & Shan, C. (2016). Isotropic and anisotropic elasticity and yielding of 3D printed material. Composites Part B: Engineering, 99, 506–513. https://doi.org/10.1016/j.compositesb.2016.06.009
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sinan Yilmaz 0000-0001-7107-5454

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Yilmaz, S. (2021). Comparative Investigation of Mechanical, Tribological and Thermo-Mechanical Properties of Commonly Used 3D Printing Materials. Avrupa Bilim Ve Teknoloji Dergisi(32), 827-831. https://doi.org/10.31590/ejosat.1040085