Araştırma Makalesi
BibTex RIS Kaynak Göster

Nanokompozitlerin Delme Prosesinde Delaminasyon ve İtme Kuvvetinin Optimizasyonu

Yıl 2021, , 807 - 815, 31.12.2021
https://doi.org/10.31590/ejosat.1040182

Öz

Grafenoksit nano-kompozitlerin delme işleminin analitik performansını geliştirmek için yeni bir tasarım optimizasyon tekniği sunulmuştur. Bu amaçla çoklu doğrusal olmayan nöro-regresyon analizleri kullanılarak delme sürecinin modelleme-tasarım-optimizasyonu için detaylı bir çalışma yapılmıştır. Veriler bu amaç için bir literatür çalışmasından seçilmiştir. Verileri modellemek için sunulan dokuz potansiyel fonksiyonel yapının tahminlerinin doğruluğu, hibrit nöro-regresyon tabanlı bir teknik kullanılarak test edilmiştir. Amaç fonksiyonlarını belirlemek için yapılan model seçimleri sırasıyla R2 değerleri, sınır değerleri ve istatistiksel sonuçlar kontrol edilerek yapılmıştır. Seçilen modeller dört farklı optimizasyon algoritması ile delaminasyon ve itme kuvveti değerlerinin optimizasyon çalışmalarında kullanılmıştır. Sonuçlar, R2eğitim ve R2 eğitim-ayarlanmış değerlerinin amaç fonksiyonu olarak dokuz modelde iyi sonuçlar verdiğini göstermiştir. Ancak, R2test değerleri ve istatistiksel hesaplamalar tüm modeller arasında ayırt edici olmuştur. Ayrıca her iki çıktı için üçüncü dereceden polinom ve logaritmik modellerin optimizasyon sonuçları referans çalışmanın sonuçlarıyla karşılaştırıldığında, mevcut sonuçların test sonuçlarına daha yakın olduğu görülmüştür.

Kaynakça

  • Adeniyi, A. G., Ighalo, J. O., & Onifade, D. V. (2019). Banana and plantain fiber-reinforced polymer composites. Journal of Polymer Engineering, 39(7), 597-611.
  • Alavitabari, S., Mohamadi, M., Javadi, A., & Garmabi, H. (2021). The effect of secondary nanofiller on mechanical properties and formulation optimization of HDPE/nanoclay/nanoCaCO3 hybrid nanocomposites using response surface methodology. Journal of Vinyl and Additive Technology, 27(1), 54-67.
  • Anand, G., Alagumurthi, N., Elansezhian, R., Palanikumar, K., & Venkateshwaran, N. (2018). Investigation of drilling parameters on hybrid polymer composites using grey relational analysis, regression, fuzzy logic, and ANN models. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4), 1-20.
  • Aydin, L., & Artem, H. S. (2011). Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings. Journal of reinforced plastics and composites, 30(14), 1197-1212.
  • Caggiano, A. (2018). Machining of fibre reinforced plastic composite materials. Materials, 11(3), 442.
  • Equbal, A., Shamim, M., Badruddin, I. A., Equbal, M., Sood, A. K., Nik Ghazali, N. N., & Khan, Z. A. (2020). Application of the combined ANN and GA for multi-response optimization of cutting parameters for the turning of glass fiber-reinforced polymer composites. Mathematics, 8(6), 947.
  • Erten, H. I., Deveci, H. A., & Artem, H. S. (2020). Stochastic optimization methods: CRC Press.
  • Ferreira, F., Brito, F., Franceschi, W., Simonetti, E., Cividanes, L., Chipara, M., & Lozano, K. (2018). Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surfaces and Interfaces, 10, 100-109.
  • Hareesha, M., Yogesha, B., Naik, L. L., & Saravanabavan, D. (2021). Development on graphene based polymer composite materials and their applications—A recent review. Paper presented at the AIP Conference Proceedings.
  • Hou, W., Gao, Y., Wang, J., Blackwood, D. J., & Teo, S. (2020). Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 23, 100883.
  • Idumah, C. I., & Obele, C. M. (2021). Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces, 22, 100879.
  • Karnopp, D. C. (1963). Random search techniques for optimization problems. Automatica, 1(2-3), 111-121.
  • Kesarwani, S., Pratap, P., Kumar, J., Verma, R. K., & Singh, V. K. (2021). An integrated approach for machining characteristics optimization of polymer nanocomposites. Materials Today: Proceedings, 44, 2638-2644.
  • Khan, S. U., & Kim, J.-K. (2011). Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review. International Journal of Aeronautical and Space Sciences, 12(2), 115-133.
  • Kharwar, P. K., & Verma, R. K. (2021). Nature instigated Grey wolf algorithm for parametric optimization during machining (Milling) of polymer nanocomposites. Journal of Thermoplastic Composite Materials, 0892705721993202.
  • Kim, T., Park, C., Samuel, E. P., An, S., Aldalbahi, A., Alotaibi, F., . . . Yoon, S. S. (2021). Supersonically Sprayed Washable, Wearable, Stretchable, Hydrophobic, and Antibacterial rGO/AgNW Fabric for Multifunctional Sensors and Supercapacitors. ACS Applied Materials & Interfaces, 13(8), 10013-10025.
  • Kumar, J., & Verma, R. K. (2021a). Experimental investigation for machinability aspects of graphene oxide/carbon fiber reinforced polymer nanocomposites and predictive modeling using hybrid approach. Defence Technology, 17(5), 1671-1686.
  • Kumar, J., & Verma, R. K. (2021b). A New Crıterıon For Drıllıng Machınabılıty Evaluatıon Of Nanocomposıtes Modıfıed By Graphene/Carbon Fıber Epoxy Matrıx And Optımızatıon Usıng Combıned Compromıse Solutıon. Surface Review and Letters, 2150082.
  • Kumar, J., & Verma, R. K. (2021c). A novel methodology of Combined Compromise Solution and Principal Component Analysis (CoCoSo-PCA) for machinability investigation of graphene nanocomposites. CIRP Journal of Manufacturing Science and Technology, 33, 143-157.
  • Kumar, J., Verma, R. K., & Debnath, K. (2020). A new approach to control the delamination and thrust force during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. Composite Structures, 253, 112786.
  • Lawal, A. T. (2020). Recent progress in graphene based polymer nanocomposites. Cogent Chemistry, 6(1), 1833476.
  • Moghri, M., Madic, M., Omidi, M., & Farahnakian, M. (2014). Surface roughness optimization of polyamide-6/nanoclay nanocomposites using artificial neural network: genetic algorithm approach. The Scientific World Journal, 2014.
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313.
  • Ozturk, S., Aydin, L., & Celik, E. (2018). A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications. Solar Energy, 161, 109-124.
  • Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75-127.
  • Papageorgiou, D. G., Li, Z., Liu, M., Kinloch, I. A., & Young, R. J. (2020). Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale, 12(4), 2228-2267.
  • Pramanik, S., Kumar, Y., Gupta, D., Vashistha, V. K., Kumar, A., Karmakar, P., & Das, D. K. (2021). Recent advances on structural and functional aspects of multi-dimensional nanoparticles employed for electrochemically sensing bio-molecules of medical importance. Materials Science and Engineering: B, 272, 115356.
  • Rao, S. S. (2019). Engineering optimization: theory and practice: John Wiley & Sons.
  • Roshan, H., Sheikhi, M. H., Haghighi, M. K. F., & Padidar, P. (2019). High-performance room temperature methane gas sensor based on lead sulfide/reduced graphene oxide nanocomposite. IEEE Sensors Journal, 20(5), 2526-2532.
  • Sanes, J., Sánchez, C., Pamies, R., Avilés, M.-D., & Bermúdez, M.-D. (2020). Extrusion of polymer nanocomposites with graphene and graphene derivative nanofillers: An overview of recent developments. Materials, 13(3), 549.
  • Saoudi, J., Zitoune, R., Mezlini, S., Gururaja, S., & Seitier, P. (2016). Critical thrust force predictions during drilling: analytical modeling and X-ray tomography quantification. Composite Structures, 153, 886-894.
  • Savran, M., & Aydin, L. (2018). Stochastic optimization of graphite-flax/epoxy hybrid laminated composite for maximum fundamental frequency and minimum cost. Engineering Structures, 174, 675-687.
  • Sharma, A. K., Bhandari, R., Aherwar, A., & Rimašauskienė, R. (2020). Matrix materials used in composites: A comprehensive study. Materials Today: Proceedings, 21, 1559-1562.
  • Soleymani Eil Bakhtiari, S., Bakhsheshi-Rad, H. R., Karbasi, S., Tavakoli, M., Razzaghi, M., Ismail, A. F., . . . Berto, F. (2020). Polymethyl methacrylate-based bone cements containing carbon nanotubes and graphene oxide: An overview of physical, mechanical, and biological properties. Polymers, 12(7), 1469.
  • Srinivasan, S., Thirumurugaveerakumar, S., Nagarajan, N., Raffic, N. M., & Babu, K. G. (2021). A review of optimization techniques in machining of composite materials. Materials Today: Proceedings.
  • Suriani, M., Radzi, F. S. M., Ilyas, R., Petrů, M., Sapuan, S., & Ruzaidi, C. (2021). Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers, 13(8), 1282.
  • Thakur, R., & Singh, K. (2021). Influence of fillers on polymeric composite during conventional machining processes: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(2), 1-20.
  • Wang, M., Tang, X.-H., Cai, J.-H., Wu, H., Shen, J.-B., & Guo, S.-Y. (2021). Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon.
  • Yu, R., & Pandolfi, A. (2008). Modeling of delamination fracture in composites: a review. Delamination behaviour of composites, 429-457.
  • Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 10(26), 15328-15345.
  • Zabinsky, Z. B. (2009). Random search algorithms. Department of Industrial and Systems Engineering, University of Washington, USA.

Optimization of Delamination and Thrust Force in the Drilling Process of Nanocomposites

Yıl 2021, , 807 - 815, 31.12.2021
https://doi.org/10.31590/ejosat.1040182

Öz

A new design optimization technique is presented to improve the analytical performance of the drilling process of graphene oxide nano-composites. A detailed study was conducted for modeling-design-optimization of the drilling process using multiple nonlinear neuro-regression analyses for this goal. The data were slected from a literature study for this objective. The accuracy of the predictions of the nine potential functional structures presented for modeling the data was tested using a hybrid neuro-regression-based technique. Model selections to determine the objective functions were made by controlling the R2 values, limit values, and statistical results, respectively. The selected models were used in the optimization studies of delamination and thrust force values with four different optimization algorithms. The results show that the R2training and R2 training-adjust values give good results in the nine models as objective functions. However, R2testing values and statistical calculations were distinctive among all models. Furthermore, when the optimization results of the third-order polynomial and logarithmic models for both responses were compared to the reference study's results, it was observed that the current results were more closer to the test results.

Kaynakça

  • Adeniyi, A. G., Ighalo, J. O., & Onifade, D. V. (2019). Banana and plantain fiber-reinforced polymer composites. Journal of Polymer Engineering, 39(7), 597-611.
  • Alavitabari, S., Mohamadi, M., Javadi, A., & Garmabi, H. (2021). The effect of secondary nanofiller on mechanical properties and formulation optimization of HDPE/nanoclay/nanoCaCO3 hybrid nanocomposites using response surface methodology. Journal of Vinyl and Additive Technology, 27(1), 54-67.
  • Anand, G., Alagumurthi, N., Elansezhian, R., Palanikumar, K., & Venkateshwaran, N. (2018). Investigation of drilling parameters on hybrid polymer composites using grey relational analysis, regression, fuzzy logic, and ANN models. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(4), 1-20.
  • Aydin, L., & Artem, H. S. (2011). Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings. Journal of reinforced plastics and composites, 30(14), 1197-1212.
  • Caggiano, A. (2018). Machining of fibre reinforced plastic composite materials. Materials, 11(3), 442.
  • Equbal, A., Shamim, M., Badruddin, I. A., Equbal, M., Sood, A. K., Nik Ghazali, N. N., & Khan, Z. A. (2020). Application of the combined ANN and GA for multi-response optimization of cutting parameters for the turning of glass fiber-reinforced polymer composites. Mathematics, 8(6), 947.
  • Erten, H. I., Deveci, H. A., & Artem, H. S. (2020). Stochastic optimization methods: CRC Press.
  • Ferreira, F., Brito, F., Franceschi, W., Simonetti, E., Cividanes, L., Chipara, M., & Lozano, K. (2018). Functionalized graphene oxide as reinforcement in epoxy based nanocomposites. Surfaces and Interfaces, 10, 100-109.
  • Hareesha, M., Yogesha, B., Naik, L. L., & Saravanabavan, D. (2021). Development on graphene based polymer composite materials and their applications—A recent review. Paper presented at the AIP Conference Proceedings.
  • Hou, W., Gao, Y., Wang, J., Blackwood, D. J., & Teo, S. (2020). Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Materials Today Communications, 23, 100883.
  • Idumah, C. I., & Obele, C. M. (2021). Understanding interfacial influence on properties of polymer nanocomposites. Surfaces and Interfaces, 22, 100879.
  • Karnopp, D. C. (1963). Random search techniques for optimization problems. Automatica, 1(2-3), 111-121.
  • Kesarwani, S., Pratap, P., Kumar, J., Verma, R. K., & Singh, V. K. (2021). An integrated approach for machining characteristics optimization of polymer nanocomposites. Materials Today: Proceedings, 44, 2638-2644.
  • Khan, S. U., & Kim, J.-K. (2011). Impact and delamination failure of multiscale carbon nanotube-fiber reinforced polymer composites: a review. International Journal of Aeronautical and Space Sciences, 12(2), 115-133.
  • Kharwar, P. K., & Verma, R. K. (2021). Nature instigated Grey wolf algorithm for parametric optimization during machining (Milling) of polymer nanocomposites. Journal of Thermoplastic Composite Materials, 0892705721993202.
  • Kim, T., Park, C., Samuel, E. P., An, S., Aldalbahi, A., Alotaibi, F., . . . Yoon, S. S. (2021). Supersonically Sprayed Washable, Wearable, Stretchable, Hydrophobic, and Antibacterial rGO/AgNW Fabric for Multifunctional Sensors and Supercapacitors. ACS Applied Materials & Interfaces, 13(8), 10013-10025.
  • Kumar, J., & Verma, R. K. (2021a). Experimental investigation for machinability aspects of graphene oxide/carbon fiber reinforced polymer nanocomposites and predictive modeling using hybrid approach. Defence Technology, 17(5), 1671-1686.
  • Kumar, J., & Verma, R. K. (2021b). A New Crıterıon For Drıllıng Machınabılıty Evaluatıon Of Nanocomposıtes Modıfıed By Graphene/Carbon Fıber Epoxy Matrıx And Optımızatıon Usıng Combıned Compromıse Solutıon. Surface Review and Letters, 2150082.
  • Kumar, J., & Verma, R. K. (2021c). A novel methodology of Combined Compromise Solution and Principal Component Analysis (CoCoSo-PCA) for machinability investigation of graphene nanocomposites. CIRP Journal of Manufacturing Science and Technology, 33, 143-157.
  • Kumar, J., Verma, R. K., & Debnath, K. (2020). A new approach to control the delamination and thrust force during drilling of polymer nanocomposites reinforced by graphene oxide/carbon fiber. Composite Structures, 253, 112786.
  • Lawal, A. T. (2020). Recent progress in graphene based polymer nanocomposites. Cogent Chemistry, 6(1), 1833476.
  • Moghri, M., Madic, M., Omidi, M., & Farahnakian, M. (2014). Surface roughness optimization of polyamide-6/nanoclay nanocomposites using artificial neural network: genetic algorithm approach. The Scientific World Journal, 2014.
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The computer journal, 7(4), 308-313.
  • Ozturk, S., Aydin, L., & Celik, E. (2018). A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications. Solar Energy, 161, 109-124.
  • Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. Progress in Materials Science, 90, 75-127.
  • Papageorgiou, D. G., Li, Z., Liu, M., Kinloch, I. A., & Young, R. J. (2020). Mechanisms of mechanical reinforcement by graphene and carbon nanotubes in polymer nanocomposites. Nanoscale, 12(4), 2228-2267.
  • Pramanik, S., Kumar, Y., Gupta, D., Vashistha, V. K., Kumar, A., Karmakar, P., & Das, D. K. (2021). Recent advances on structural and functional aspects of multi-dimensional nanoparticles employed for electrochemically sensing bio-molecules of medical importance. Materials Science and Engineering: B, 272, 115356.
  • Rao, S. S. (2019). Engineering optimization: theory and practice: John Wiley & Sons.
  • Roshan, H., Sheikhi, M. H., Haghighi, M. K. F., & Padidar, P. (2019). High-performance room temperature methane gas sensor based on lead sulfide/reduced graphene oxide nanocomposite. IEEE Sensors Journal, 20(5), 2526-2532.
  • Sanes, J., Sánchez, C., Pamies, R., Avilés, M.-D., & Bermúdez, M.-D. (2020). Extrusion of polymer nanocomposites with graphene and graphene derivative nanofillers: An overview of recent developments. Materials, 13(3), 549.
  • Saoudi, J., Zitoune, R., Mezlini, S., Gururaja, S., & Seitier, P. (2016). Critical thrust force predictions during drilling: analytical modeling and X-ray tomography quantification. Composite Structures, 153, 886-894.
  • Savran, M., & Aydin, L. (2018). Stochastic optimization of graphite-flax/epoxy hybrid laminated composite for maximum fundamental frequency and minimum cost. Engineering Structures, 174, 675-687.
  • Sharma, A. K., Bhandari, R., Aherwar, A., & Rimašauskienė, R. (2020). Matrix materials used in composites: A comprehensive study. Materials Today: Proceedings, 21, 1559-1562.
  • Soleymani Eil Bakhtiari, S., Bakhsheshi-Rad, H. R., Karbasi, S., Tavakoli, M., Razzaghi, M., Ismail, A. F., . . . Berto, F. (2020). Polymethyl methacrylate-based bone cements containing carbon nanotubes and graphene oxide: An overview of physical, mechanical, and biological properties. Polymers, 12(7), 1469.
  • Srinivasan, S., Thirumurugaveerakumar, S., Nagarajan, N., Raffic, N. M., & Babu, K. G. (2021). A review of optimization techniques in machining of composite materials. Materials Today: Proceedings.
  • Suriani, M., Radzi, F. S. M., Ilyas, R., Petrů, M., Sapuan, S., & Ruzaidi, C. (2021). Flammability, Tensile, and Morphological Properties of Oil Palm Empty Fruit Bunches Fiber/Pet Yarn-Reinforced Epoxy Fire Retardant Hybrid Polymer Composites. Polymers, 13(8), 1282.
  • Thakur, R., & Singh, K. (2021). Influence of fillers on polymeric composite during conventional machining processes: a review. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 43(2), 1-20.
  • Wang, M., Tang, X.-H., Cai, J.-H., Wu, H., Shen, J.-B., & Guo, S.-Y. (2021). Construction, mechanism and prospective of conductive polymer composites with multiple interfaces for electromagnetic interference shielding: a review. Carbon.
  • Yu, R., & Pandolfi, A. (2008). Modeling of delamination fracture in composites: a review. Delamination behaviour of composites, 429-457.
  • Yu, W., Sisi, L., Haiyan, Y., & Jie, L. (2020). Progress in the functional modification of graphene/graphene oxide: A review. RSC Advances, 10(26), 15328-15345.
  • Zabinsky, Z. B. (2009). Random search algorithms. Department of Industrial and Systems Engineering, University of Washington, USA.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Nilay Küçükdoğan Öztürk 0000-0003-4375-0752

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Küçükdoğan Öztürk, N. (2021). Optimization of Delamination and Thrust Force in the Drilling Process of Nanocomposites. Avrupa Bilim Ve Teknoloji Dergisi(32), 807-815. https://doi.org/10.31590/ejosat.1040182