Araştırma Makalesi
BibTex RIS Kaynak Göster

Ag NPs-SnO2/İndirgenmiş Grafen Oksit Kağıt: Süperkapasitör için Esnek Elektrot Materyali Üretimi

Yıl 2021, , 721 - 727, 31.12.2021
https://doi.org/10.31590/ejosat.1041309

Öz

Bu çalışmada, gümüş nanopartiküller (Ag NPs) ile dekore edilmiş kalay (IV) oksit (SnO2)/indirgenmiş grafen oksit (rGO) esnek kağıt elektrot üretilmiş ve bu malzemenin (Ag NPs-SnO2/rGO) süperkapasitör (SK) performansı araştırılmıştır. Bu amaçla basit hidrotermal yöntemle sentezlenen SnO2 ve GO karıştırılmış ve hazırlanan bu dispersiyon vakumla filtre edilerek SnO2/rGO esnek kağıt elektrot elde edilmiştir. Daha sonra, SnO2/rGO esnek kağıt elektrot yüzeyinde Ag NPs’nin elektrokimyasal depozisyonuyla Ag NPs-SnO2/rGO esnek kağıt elektrot üretilmiştir. Elde edilen malzemelerin karakterizasyonu, taramalı elektron mikroskobu, enerji dağılımlı X-ışını spektroskopisi ve X-ışını kırınımı teknikleri kullanılarak gerçekleştirilmiştir. Hazırlanan esnek ve serbest duran Ag NPs-SnO2/rGO kağıt elektrotun SK performansı araştırılmıştır. Bu esnek kağıt elektrotun spesifik kapasitans değeri 0,5 A g-1'de 280 F g-1 olarak belirlenmiştir. Ayrıca, esnek SK uygulamalarında Ag NPs-SnO2/rGO kağıt elektrotların kullanımı araştırılmıştır. Ag NPs-SnO2/rGO kağıt elektrotun 180° içe doğru 200 kez katlanması sonucunda başlangıç spesifik kapasitans değerinde sadece %28'lik bir azalma olduğu gözlenmiştir.

Kaynakça

  • Allen, M. J., Tung, V. C., Kaner, R B. (2010). Honeycomb Carbon: A Review of Graphene. Chem. Rev., 110, 132-145.
  • Chee, W. K., Lim, H. N., Zainal, Z., Huang, Z. N., Harrison, I., Andou, Y. (2016). Flexible Graphene-Based Supercapacitors: A Review. J. Phys. Chem. C, 120, 4153-4172.
  • Dağcı, K., Alanyalıoğlu, M. (2016). Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite. ACS Appl. Mater. Interfaces, 8, 2713-2722.
  • Dağcı Kıranşan, K. Topçu, E. (2020). SnS2-gC3N4/rGO Composite Paper as an Electrode for High-Performance Flexible Symmetric Supercapacitors. Synthetic Metals 264, 116390.
  • Erçarıkcı, E., Alanyalıoğlu, M. (2021). Dual-Functional Graphene-Based Flexible Material for Membrane Filtration and Electrochemical Sensing of Heavy Metal Ions. IEEE SENSORS JOURNAL, VOL. 21, NO. 3.
  • Erçarıkcı, E., Dağcı, K., Topçu, E., Alanyalıoğlu, M. (2014). Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films. Materials Research Bulletin 55, 95-101 97.
  • Feng, X., Li, Y., Chen, G., Liu, Z., Ning, X., Hu, A., Tang, Q., Chen, X. (2018). Free-standing MnO2/nitrogen-doped graphene paper hybrids as binder-free electrode for supercapacitor applications. Materials Letters 231, 114-118.
  • Hu, L., Pasta, M., Mantia, F. L., Cui, L., Jeong, S., Deshazer, H. D., Choi, J. W., Han, S. M., Cui, Y. (2010). Stretchable, Porous, and Conductive Energy Textiles. Nano Lett., 10, 708-714.
  • Jiao, S., Li, T., Xiong, C., Tang, C., Li, H., Zhao, T., Dang, A. (2019). A Facile Method to Prepare Silver Doped Graphene Combined with Polyaniline for High Performances of Filter Paper Based Flexible Electrode. Nanomaterials, 9, 1434.
  • Ke, Q., Wang, J. (2016). “Graphene-based materials for supercapacitor electrodes-A review”, J Materiomics, 2, 37-54.
  • Kovtyukhova, N, I., Ollivier, P. J., Martin, B, R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., Gorchinskiy, A. D., (1999). Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater., vol. 11, no. 3, pp. 771-778.
  • Liang, J., Zhao, Y., Guo, L., Li, L. (2012). Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery. ACS Appl. Mater. Interfaces, 4, 5742-5748.
  • Liu, Y., Jiao, Y., Zhang, Z., Qu, F., Umar, A., Wu, X., Hierarchical SnO2 Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications, ACS Appl. Mater. Interfaces 2014, 6, 2174-2184.
  • Ma, L., Shen, X., Ji, Z., Zhu, G., Zhou, H. (2014). Ag nanoparticles decorated MnO2/reduced graphene oxideas advanced electrode materials for supercapacitors. Chemical Engineering Journal 252, 95-103.
  • Sahoo, P. K., Kumar, N., Thiyagarajan, S., Thakur, D., Panda, H. S. (2018). Freeze-Casting of Multifunctional Cellular 3D-Graphene/Ag Nanocomposites: Synergistically Affect Supercapacitor, Catalytic, and Antibacterial Properties. ACS Sustainable Chem. Eng., 6, 7475-7487.
  • Shao, Y., El-Kady, M. F., Wang, L. J., Zhang, Q., Li, Y., Wang, H., Mousaviae, M. F., Kaner, R. B. (2015). Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev., 44, 3639.
  • Saravanakumar, B., Ramachandran, S. P., Ravi1, G., Ganesh, V., Ravichandran, S., P. M. Mareeswaran, Yuvakkumar, R. (2018). Enhanced pseudocapacitive performance of SnO2, Zn-SnO2, and Ag-SnO2 nanoparticles, Ionics, 24:4081-4092.
  • Topçu, E., Dağcı Kıranşan, K., Alanyalıoğlu, M. (2016). Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 2058-2069.
  • Velmurugan, V., Srinivasarao, U., Ramachandran, R., Saranya, M., Grace, A. N. (2016). Syntkıyashesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Materials Research Bulletin 84, 145-151.
  • Vickery, J. L., Patil, A. J., Mann, S. (2009). Fabrication of Graphene–Polymer NanocompositesWith Higher-Order Three-Dimensional Architectures. Adv. Mater., 21, 2180-2184.
  • Wang, G. K., Sun, X., Lu, F. Y., Sun, H. T., Yu, M. P., Jiang, W. L., Liu C. S., J. Lian,. (2012). Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small, 8, 452–459.
  • Wang, X., Cao, X., Bourgeois, L., Guan, H, Chen, S., Zhong, Y., Tang, D-M., Li, H., Zhai, T., Li, L., Bando, Y., Golberg, D. (2012). N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-Ion Batteries, Adv. Funct. Mater., 22, 2682-2690.
  • Wang, X., Shi, G. (2015). Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci., 8, 790.
  • Wu, Q., Diao, P., Sun, J., Jin, T., Xu, D., Xiang, M. (2015). Electrodeposition of Vertically Aligned Silver Nanoplate Arrays on Indium Tin Oxide Substrates. J. Phys. Chem. C, 119, 20709-20720.
  • Xu, Y., Zhou, Y., Guo, J., Zhang, S., Lu, Y. (2019). Preparation of SnS2/g-C3N4 composite as the electrode material for Supercapacitor, J. Alloys Compd., 806, 343-349.
  • Yan, Y., Wang, T., Li, X., Pang, H., Xue, H. (2017). Noble metal-based materials in high-performance Supercapacitors, Inorg. Chem. Front., 4, 33.
  • Yang, S., Li, G., Zhao, J., Zhu, H., Qu, L. (2014). Electrochemical preparation of Ag nanoparticles/poly(methylene blue) functionalized graphene nanocomposite film modified electrode for sensitive determination of rutin. Journal of Electroanalytical Chemistry, 717-718, 225-230.
  • Yang, T., Zhu, M., Gu, K., Zhai, C., Zhao, Q., Yang, X, Zhang, M. (2018). Facile synthesis of SnO2 nanoparticles for improved formaldehyde detection. New J. Chem., 42, 13612.
  • Zeng, W., Miao, B., Zhou, Q., Lin, L. (2013). Hydrothermal synthesis and gas sensing properties of variety low dimensional nanostructures of SnO2. Physica E47, 116-121.

Ag NPs-SnO2/Reduced Graphene Oxide Paper: Production of Flexible Electrode Material for Supercapacitor

Yıl 2021, , 721 - 727, 31.12.2021
https://doi.org/10.31590/ejosat.1041309

Öz

In this study, tin (IV) oxide (SnO2)/reduced graphene oxide (rGO) flexible paper electrode decorated with silver nanoparticles (Ag NPs) was produced, and supercapacitor (SC) performance of this material (Ag NPs-SnO2/rGO) was investigated. For this purpose, SnO2 synthesized by a simple hydrothermal method and GO were mixed and this prepared dispersion was vacuum filtered to obtain SnO2/rGO flexible paper electrode. Then, Ag NPs-SnO2/rGO flexible paper electrode was produced through electrochemical deposition of Ag NPs on the SnO2/rGO flexible paper electrode surface. Characterization of the obtained material was performed using scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction techniques. The SC performance of the prepared flexible and free-standing Ag NPs-SnO2/rGO paper electrode was investigated. The specific capacitance value of this flexible paper electrode was determined as 280 F g-1 at 0.5 A g-1. Additionally, the use of Ag NPs-SnO2/rGO paper electrodes in flexible SC applications was studied. It was observed that there was only a 28% decrease in the initial specific capacitance value as a result of folding Ag NPs-SnO2/rGO paper electrode at 180° inward 200 times.

Kaynakça

  • Allen, M. J., Tung, V. C., Kaner, R B. (2010). Honeycomb Carbon: A Review of Graphene. Chem. Rev., 110, 132-145.
  • Chee, W. K., Lim, H. N., Zainal, Z., Huang, Z. N., Harrison, I., Andou, Y. (2016). Flexible Graphene-Based Supercapacitors: A Review. J. Phys. Chem. C, 120, 4153-4172.
  • Dağcı, K., Alanyalıoğlu, M. (2016). Preparation of Free-Standing and Flexible Graphene/Ag Nanoparticles/Poly(pyronin Y) Hybrid Paper Electrode for Amperometric Determination of Nitrite. ACS Appl. Mater. Interfaces, 8, 2713-2722.
  • Dağcı Kıranşan, K. Topçu, E. (2020). SnS2-gC3N4/rGO Composite Paper as an Electrode for High-Performance Flexible Symmetric Supercapacitors. Synthetic Metals 264, 116390.
  • Erçarıkcı, E., Alanyalıoğlu, M. (2021). Dual-Functional Graphene-Based Flexible Material for Membrane Filtration and Electrochemical Sensing of Heavy Metal Ions. IEEE SENSORS JOURNAL, VOL. 21, NO. 3.
  • Erçarıkcı, E., Dağcı, K., Topçu, E., Alanyalıoğlu, M. (2014). Electrochemical preparation of poly(methylene blue)/graphene nanocomposite thin films. Materials Research Bulletin 55, 95-101 97.
  • Feng, X., Li, Y., Chen, G., Liu, Z., Ning, X., Hu, A., Tang, Q., Chen, X. (2018). Free-standing MnO2/nitrogen-doped graphene paper hybrids as binder-free electrode for supercapacitor applications. Materials Letters 231, 114-118.
  • Hu, L., Pasta, M., Mantia, F. L., Cui, L., Jeong, S., Deshazer, H. D., Choi, J. W., Han, S. M., Cui, Y. (2010). Stretchable, Porous, and Conductive Energy Textiles. Nano Lett., 10, 708-714.
  • Jiao, S., Li, T., Xiong, C., Tang, C., Li, H., Zhao, T., Dang, A. (2019). A Facile Method to Prepare Silver Doped Graphene Combined with Polyaniline for High Performances of Filter Paper Based Flexible Electrode. Nanomaterials, 9, 1434.
  • Ke, Q., Wang, J. (2016). “Graphene-based materials for supercapacitor electrodes-A review”, J Materiomics, 2, 37-54.
  • Kovtyukhova, N, I., Ollivier, P. J., Martin, B, R., Mallouk, T. E., Chizhik, S. A., Buzaneva, E. V., Gorchinskiy, A. D., (1999). Layer-by-Layer Assembly of Ultrathin Composite Films from Micron-Sized Graphite Oxide Sheets and Polycations. Chem. Mater., vol. 11, no. 3, pp. 771-778.
  • Liang, J., Zhao, Y., Guo, L., Li, L. (2012). Flexible Free-Standing Graphene/SnO2 Nanocomposites Paper for Li-Ion Battery. ACS Appl. Mater. Interfaces, 4, 5742-5748.
  • Liu, Y., Jiao, Y., Zhang, Z., Qu, F., Umar, A., Wu, X., Hierarchical SnO2 Nanostructures Made of Intermingled Ultrathin Nanosheets for Environmental Remediation, Smart Gas Sensor, and Supercapacitor Applications, ACS Appl. Mater. Interfaces 2014, 6, 2174-2184.
  • Ma, L., Shen, X., Ji, Z., Zhu, G., Zhou, H. (2014). Ag nanoparticles decorated MnO2/reduced graphene oxideas advanced electrode materials for supercapacitors. Chemical Engineering Journal 252, 95-103.
  • Sahoo, P. K., Kumar, N., Thiyagarajan, S., Thakur, D., Panda, H. S. (2018). Freeze-Casting of Multifunctional Cellular 3D-Graphene/Ag Nanocomposites: Synergistically Affect Supercapacitor, Catalytic, and Antibacterial Properties. ACS Sustainable Chem. Eng., 6, 7475-7487.
  • Shao, Y., El-Kady, M. F., Wang, L. J., Zhang, Q., Li, Y., Wang, H., Mousaviae, M. F., Kaner, R. B. (2015). Graphene-based materials for flexible supercapacitors. Chem. Soc. Rev., 44, 3639.
  • Saravanakumar, B., Ramachandran, S. P., Ravi1, G., Ganesh, V., Ravichandran, S., P. M. Mareeswaran, Yuvakkumar, R. (2018). Enhanced pseudocapacitive performance of SnO2, Zn-SnO2, and Ag-SnO2 nanoparticles, Ionics, 24:4081-4092.
  • Topçu, E., Dağcı Kıranşan, K., Alanyalıoğlu, M. (2016). Free-standing Graphene/Poly(methylene blue)/AgNPs Composite Paper for Electrochemical Sensing of NADH. Electroanalysis, 28, 2058-2069.
  • Velmurugan, V., Srinivasarao, U., Ramachandran, R., Saranya, M., Grace, A. N. (2016). Syntkıyashesis of tin oxide/graphene (SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications. Materials Research Bulletin 84, 145-151.
  • Vickery, J. L., Patil, A. J., Mann, S. (2009). Fabrication of Graphene–Polymer NanocompositesWith Higher-Order Three-Dimensional Architectures. Adv. Mater., 21, 2180-2184.
  • Wang, G. K., Sun, X., Lu, F. Y., Sun, H. T., Yu, M. P., Jiang, W. L., Liu C. S., J. Lian,. (2012). Flexible pillared graphene-paper electrodes for high-performance electrochemical supercapacitors. Small, 8, 452–459.
  • Wang, X., Cao, X., Bourgeois, L., Guan, H, Chen, S., Zhong, Y., Tang, D-M., Li, H., Zhai, T., Li, L., Bando, Y., Golberg, D. (2012). N-Doped Graphene-SnO2 Sandwich Paper for High-Performance Lithium-Ion Batteries, Adv. Funct. Mater., 22, 2682-2690.
  • Wang, X., Shi, G. (2015). Flexible graphene devices related to energy conversion and storage. Energy Environ. Sci., 8, 790.
  • Wu, Q., Diao, P., Sun, J., Jin, T., Xu, D., Xiang, M. (2015). Electrodeposition of Vertically Aligned Silver Nanoplate Arrays on Indium Tin Oxide Substrates. J. Phys. Chem. C, 119, 20709-20720.
  • Xu, Y., Zhou, Y., Guo, J., Zhang, S., Lu, Y. (2019). Preparation of SnS2/g-C3N4 composite as the electrode material for Supercapacitor, J. Alloys Compd., 806, 343-349.
  • Yan, Y., Wang, T., Li, X., Pang, H., Xue, H. (2017). Noble metal-based materials in high-performance Supercapacitors, Inorg. Chem. Front., 4, 33.
  • Yang, S., Li, G., Zhao, J., Zhu, H., Qu, L. (2014). Electrochemical preparation of Ag nanoparticles/poly(methylene blue) functionalized graphene nanocomposite film modified electrode for sensitive determination of rutin. Journal of Electroanalytical Chemistry, 717-718, 225-230.
  • Yang, T., Zhu, M., Gu, K., Zhai, C., Zhao, Q., Yang, X, Zhang, M. (2018). Facile synthesis of SnO2 nanoparticles for improved formaldehyde detection. New J. Chem., 42, 13612.
  • Zeng, W., Miao, B., Zhou, Q., Lin, L. (2013). Hydrothermal synthesis and gas sensing properties of variety low dimensional nanostructures of SnO2. Physica E47, 116-121.
Toplam 29 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Elif Erçarıkcı 0000-0002-8490-1644

Kader Dağcı Kıranşan 0000-0002-0764-9393

Ezgi Topçu 0000-0003-1506-9089

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Erçarıkcı, E., Dağcı Kıranşan, K., & Topçu, E. (2021). Ag NPs-SnO2/İndirgenmiş Grafen Oksit Kağıt: Süperkapasitör için Esnek Elektrot Materyali Üretimi. Avrupa Bilim Ve Teknoloji Dergisi(32), 721-727. https://doi.org/10.31590/ejosat.1041309