Araştırma Makalesi
BibTex RIS Kaynak Göster

Treatment by Electrocoagulation of Congo red from Aqueous Solution Using Cantor Alloy

Yıl 2021, , 791 - 796, 31.12.2021
https://doi.org/10.31590/ejosat.1041536

Öz

Electrocoagulation (EC) is one of the most effective techniques in removing color and organic pollutants from wastewater. This study aims to use a new alloy system, so-called High Entropy Alloys (HEAs), which contains at least five principal elements with 5-35 at. %, as an electrode in the EC process. The well-studied equiatomic CrMnFeCoNi HEA (Cantor alloy) was used as an anode in the treatment of the synthetically prepared wastewater (congo red solution) with EC. In the EC study, COD and color removal were evaluated at different current densities (5-100 mA/cm2) for 15 min electrolysis period. The results showed that removal efficiency of above 80 % was obtained for both parameters of COD and color at the lowest current density of 5 mA/cm2. The optimum current density was determined to be 10 mA/cm2, and the COD and color removal efficiencies were found to be 84 and 99.4 %, respectively. It was shown that the Cantor alloy possesses an effective removal in the EC process.

Teşekkür

The authors would like to thank the Department of Metallurgical and Materials Engineering, Middle East Technical University, for the production of high entropy alloys.

Kaynakça

  • Aitbara, A., Khelalfa, A., Bendaia, M., Rahma Abrane, ·, Abdeltif Amrane, ·, & Hazourli, · Sabir. (2021). Treatment of dairy wastewater by electrocoagulation using A-U4G (2017-Al) alloy and pure aluminum as electrode material. Euro-Mediterranean Journal for Environmental Integration, 3, 19. https://doi.org/10.1007/s41207-020-00227-2
  • Asghar, A., Abdul Raman, A. A., & Daud, W. M. A. W. (2017). Sequential optimization for minimizing material cost and treatment time of fenton oxidation for textile wastewater treatment. Chemical Engineering Communications, 204(8), 873–883.
  • Bahadur, N., & Bhargava, N. (2019). Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. Journal of Water Process Engineering, 32, 100934.
  • Bello, M. M., Raman, A. A. A., & Asghar, A. (2020). Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye: Oxidation-adsorption synergy and surface interaction. Journal of Water Process Engineering, 33, 101001.
  • Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603–643.
  • Buthiyappan, A., & Raman, A. A. A. (2019). Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. Journal of Cleaner Production, 206, 1025–1040.
  • Cerqueira, A., Russo, C., & Marques, M. R. C. (2009). Electroflocculation for textile wastewater treatment. Brazilian Journal of Chemical Engineering, 26(4), 659–668.
  • Chaudhary, V., Chaudhary, R., Banerjee, R., & Ramanujan, R. V. (2021). Accelerated and conventional development of magnetic high entropy alloys. Materials Today.
  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41.
  • Cortés, J. A., Alarcon-Herr, M. T., Pérez-Robles, J. F., VillicanaMéndez, M., & González-Hernández, J. (2007). Kinetic degradation of acid blue 9 through the TiO2/UV advanced oxidation process. The Nanotechnology Conference and Trade Show.
  • Daneshvar, N., Oladegaragoze, A., & Djafarzadeh, N. (2006). Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials, 129(1–3), 116–122. https://doi.org/10.1016/j.jhazmat.2005.08.033
  • Donneys-Victoria, D., Marriaga-Cabrales, N., Machuca-Martínez, F., Benavides-Guerrero, J., & Cloutier, S. G. (2020). Indigo carmine and chloride ions removal by electrocoagulation. Simultaneous production of brucite and layered double hydroxides. Journal of Water Process Engineering, 33, 101106. https://doi.org/10.1016/j.jwpe.2019.101106
  • Dura, A. (2013a). Electrocoagulation for water treatment: the removal of pollutants using aluminium alloys, stainless steels and iron anodes. National University of Ireland, Maynooth (Ireland).
  • Dura, A. (2013b). Electrocoagulation for Water Treatment: the Removal of Pollutants using Aluminium Alloys, Stainless Steels and Iron Anodes. August, 1–306. http://eprints.maynoothuniversity.ie/6744/1/adelaide-dura.pdf
  • Feng, J., Sun, Y., Zheng, Z., Zhang, J., Shu, L. I., & Tian, Y. (2007). Treatment of tannery wastewater by electrocoagulation. Journal of Environmental Sciences, 19(12), 1409–1415.
  • Holcomb, G. R., Tylczak, J., & Carney, C. (2015). Oxidation of CoCrFeMnNi high entropy alloys. Jom, 67(10), 2326–2339.
  • Huda, N., Raman, A. A. A., Bello, M. M., & Ramesh, S. (2017). Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: effects of process parameters and optimization. Journal of Environmental Management, 204, 75–81.
  • Kao, Y.-F., Chen, T.-J., Chen, S.-K., & Yeh, J.-W. (2009). Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57–64.
  • Khan, M. Z., Singh, S., Sreekrishnan, T. R., & Ahammad, S. Z. (2014). Feasibility study on anaerobic biodegradation of azo dye reactive orange 16. RSC Advances, 4(87), 46851–46859.
  • Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent–a review. Journal of Environmental Management, 128, 949–963.
  • Kukshal, V., Patnaik, A., & Bhat, I. K. (2018). Corrosion and thermal behaviour of AlCr1. 5CuFeNi2Tix high-entropy alloys. Materials Today: Proceedings, 5(9), 17073–17079.
  • Liu, Y.-J., Hu, C.-Y., & Lo, S.-L. (2019). Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. Journal of Hazardous Materials, 366, 592–605.
  • Luo, H., Li, Z., Mingers, A. M., & Raabe, D. (2018). Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science, 134, 131–139.
  • Mohammadlou, N., Rasoulifard, M. H., Vahedpour, M., & Eskandarian, M. R. (2014). The kinetic and thermodynamic study for decolorization of Congo red from aqueous solution using electrocoagulation process. Journal of Applied Chemical Research, 8(4), 123–142.
  • Molano-Mendoza, M., Donneys-Victoria, D., Marriaga-Cabrales, N., Angel Mueses, M., Puma, G. L., & Machuca-Martínez, F. (2019). Dataset on infrared spectroscopy and X-ray diffraction patterns of Mg–Al layered double hydroxides by the electrocoagulation technique. Data in Brief, 27, 104564. https://doi.org/10.1016/j.dib.2019.104564
  • Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1–3), 199–210.
  • Murty, B. S., Yeh, J.-W., Ranganathan, S., & Bhattacharjee, P. P. (2019). High-entropy alloys. Elsevier.
  • Pajootan, E., Arami, M., & Mahmoodi, N. M. (2012). Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. Journal of the Taiwan Institute of Chemical Engineers, 43(2), 282–290.
  • Qiu, Y., Thomas, S., Gibson, M. A., Fraser, H. L., & Birbilis, N. (2017). Corrosion of high entropy alloys. Npj Materials Degradation, 1(1), 1–18.
  • Shi, Y., Yang, B., & Liaw, P. K. (2017). Corrosion-resistant high-entropy alloys: A review. Metals, 7(2), 43.
  • Silva, L. G. M., Moreira, F. C., Souza, A. A. U., Souza, S. M., Boaventura, R. A. R., & Vilar, V. J. P. (2018). Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: A study regarding the discharge into the environment and the reuse in the textile industry. Journal of Cleaner Production, 198, 430–442.
  • Thakur, C., Srivastava, V. C., & Mall, I. D. (2009). Electrochemical treatment of a distillery wastewater: Parametric and residue disposal study. Chemical Engineering Journal, 148(2–3), 496–505.
  • Vargel, C. (2020). Corrosion of aluminium. Elsevier.
  • Verma, A. K. (2017). Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. Journal of Water Process Engineering, 20, 168–172.
  • Wang, J., Ji, Y., Zhang, F., Wang, D., He, X., & Wang, C. (2019). Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation. Carbon Resources Conversion, 2(2), 151–156.

Cantor Alaşımı Kullanılarak sulu çözeltiden Kongo Kırmızısının Elektrokoagülasyon ile Arıtımı

Yıl 2021, , 791 - 796, 31.12.2021
https://doi.org/10.31590/ejosat.1041536

Öz

Elektrokoagülasyon (EC) atıksudan renk ve organik kirleticileri uzaklaştırmak için en etkili tekniklerden biridir. Bu çalışmada, en az beş temel element ve herbir element için % at. 5-35 içeren Yüksek Entropi Alaşımları (HEA) olarak adlandırılan yeni bir alaşım sisteminin EC prosesinde elektrot olarak kullanılması hedeflenmiştir. Yoğun şekilde çalışılan eşit atomlu CrMnFeCoNi HEA (Cantor alaşımı), sentetik olarak hazırlanmış congo red çözeltisinin EC ile arıtılmasında anot olarak kullanılmıştır. Yapılan EC çalışması 15 dakika elektroliz süresinde farklı akım yoğunluklarında (5-100 mA/cm2) KOİ ve renk giderimi değerlendirilmiştir. Deney sonucunda, akım yoğunluğu 5 mA/cm2, her iki renk ve KOİ parametrede % 80 üzeri arıtım verimi elde edilmiştir. Optimum akım yoğunluğu ise 10 mA/cm2 olarak belirlenmiş, KOİ ve renk giderim verimi sırasıyla % 84 ve 99,4 olarak bulunmuştur. Yapılan bu çalışma neticesinde, kullanılan Cantor alaşımının EC procesinde giderimde etkili olduğu gösterilmiştir.

Kaynakça

  • Aitbara, A., Khelalfa, A., Bendaia, M., Rahma Abrane, ·, Abdeltif Amrane, ·, & Hazourli, · Sabir. (2021). Treatment of dairy wastewater by electrocoagulation using A-U4G (2017-Al) alloy and pure aluminum as electrode material. Euro-Mediterranean Journal for Environmental Integration, 3, 19. https://doi.org/10.1007/s41207-020-00227-2
  • Asghar, A., Abdul Raman, A. A., & Daud, W. M. A. W. (2017). Sequential optimization for minimizing material cost and treatment time of fenton oxidation for textile wastewater treatment. Chemical Engineering Communications, 204(8), 873–883.
  • Bahadur, N., & Bhargava, N. (2019). Novel pilot scale photocatalytic treatment of textile & dyeing industry wastewater to achieve process water quality and enabling zero liquid discharge. Journal of Water Process Engineering, 32, 100934.
  • Bello, M. M., Raman, A. A. A., & Asghar, A. (2020). Activated carbon as carrier in fluidized bed reactor for Fenton oxidation of recalcitrant dye: Oxidation-adsorption synergy and surface interaction. Journal of Water Process Engineering, 33, 101001.
  • Brillas, E., & Martínez-Huitle, C. A. (2015). Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Applied Catalysis B: Environmental, 166, 603–643.
  • Buthiyappan, A., & Raman, A. A. A. (2019). Energy intensified integrated advanced oxidation technology for the treatment of recalcitrant industrial wastewater. Journal of Cleaner Production, 206, 1025–1040.
  • Cerqueira, A., Russo, C., & Marques, M. R. C. (2009). Electroflocculation for textile wastewater treatment. Brazilian Journal of Chemical Engineering, 26(4), 659–668.
  • Chaudhary, V., Chaudhary, R., Banerjee, R., & Ramanujan, R. V. (2021). Accelerated and conventional development of magnetic high entropy alloys. Materials Today.
  • Chen, G. (2004). Electrochemical technologies in wastewater treatment. Separation and Purification Technology, 38(1), 11–41.
  • Cortés, J. A., Alarcon-Herr, M. T., Pérez-Robles, J. F., VillicanaMéndez, M., & González-Hernández, J. (2007). Kinetic degradation of acid blue 9 through the TiO2/UV advanced oxidation process. The Nanotechnology Conference and Trade Show.
  • Daneshvar, N., Oladegaragoze, A., & Djafarzadeh, N. (2006). Decolorization of basic dye solutions by electrocoagulation: An investigation of the effect of operational parameters. Journal of Hazardous Materials, 129(1–3), 116–122. https://doi.org/10.1016/j.jhazmat.2005.08.033
  • Donneys-Victoria, D., Marriaga-Cabrales, N., Machuca-Martínez, F., Benavides-Guerrero, J., & Cloutier, S. G. (2020). Indigo carmine and chloride ions removal by electrocoagulation. Simultaneous production of brucite and layered double hydroxides. Journal of Water Process Engineering, 33, 101106. https://doi.org/10.1016/j.jwpe.2019.101106
  • Dura, A. (2013a). Electrocoagulation for water treatment: the removal of pollutants using aluminium alloys, stainless steels and iron anodes. National University of Ireland, Maynooth (Ireland).
  • Dura, A. (2013b). Electrocoagulation for Water Treatment: the Removal of Pollutants using Aluminium Alloys, Stainless Steels and Iron Anodes. August, 1–306. http://eprints.maynoothuniversity.ie/6744/1/adelaide-dura.pdf
  • Feng, J., Sun, Y., Zheng, Z., Zhang, J., Shu, L. I., & Tian, Y. (2007). Treatment of tannery wastewater by electrocoagulation. Journal of Environmental Sciences, 19(12), 1409–1415.
  • Holcomb, G. R., Tylczak, J., & Carney, C. (2015). Oxidation of CoCrFeMnNi high entropy alloys. Jom, 67(10), 2326–2339.
  • Huda, N., Raman, A. A. A., Bello, M. M., & Ramesh, S. (2017). Electrocoagulation treatment of raw landfill leachate using iron-based electrodes: effects of process parameters and optimization. Journal of Environmental Management, 204, 75–81.
  • Kao, Y.-F., Chen, T.-J., Chen, S.-K., & Yeh, J.-W. (2009). Microstructure and mechanical property of as-cast,-homogenized, and-deformed AlxCoCrFeNi (0≤ x≤ 2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57–64.
  • Khan, M. Z., Singh, S., Sreekrishnan, T. R., & Ahammad, S. Z. (2014). Feasibility study on anaerobic biodegradation of azo dye reactive orange 16. RSC Advances, 4(87), 46851–46859.
  • Khandegar, V., & Saroha, A. K. (2013). Electrocoagulation for the treatment of textile industry effluent–a review. Journal of Environmental Management, 128, 949–963.
  • Kukshal, V., Patnaik, A., & Bhat, I. K. (2018). Corrosion and thermal behaviour of AlCr1. 5CuFeNi2Tix high-entropy alloys. Materials Today: Proceedings, 5(9), 17073–17079.
  • Liu, Y.-J., Hu, C.-Y., & Lo, S.-L. (2019). Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. Journal of Hazardous Materials, 366, 592–605.
  • Luo, H., Li, Z., Mingers, A. M., & Raabe, D. (2018). Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution. Corrosion Science, 134, 131–139.
  • Mohammadlou, N., Rasoulifard, M. H., Vahedpour, M., & Eskandarian, M. R. (2014). The kinetic and thermodynamic study for decolorization of Congo red from aqueous solution using electrocoagulation process. Journal of Applied Chemical Research, 8(4), 123–142.
  • Molano-Mendoza, M., Donneys-Victoria, D., Marriaga-Cabrales, N., Angel Mueses, M., Puma, G. L., & Machuca-Martínez, F. (2019). Dataset on infrared spectroscopy and X-ray diffraction patterns of Mg–Al layered double hydroxides by the electrocoagulation technique. Data in Brief, 27, 104564. https://doi.org/10.1016/j.dib.2019.104564
  • Mollah, M. Y. A., Morkovsky, P., Gomes, J. A. G., Kesmez, M., Parga, J., & Cocke, D. L. (2004). Fundamentals, present and future perspectives of electrocoagulation. Journal of Hazardous Materials, 114(1–3), 199–210.
  • Murty, B. S., Yeh, J.-W., Ranganathan, S., & Bhattacharjee, P. P. (2019). High-entropy alloys. Elsevier.
  • Pajootan, E., Arami, M., & Mahmoodi, N. M. (2012). Binary system dye removal by electrocoagulation from synthetic and real colored wastewaters. Journal of the Taiwan Institute of Chemical Engineers, 43(2), 282–290.
  • Qiu, Y., Thomas, S., Gibson, M. A., Fraser, H. L., & Birbilis, N. (2017). Corrosion of high entropy alloys. Npj Materials Degradation, 1(1), 1–18.
  • Shi, Y., Yang, B., & Liaw, P. K. (2017). Corrosion-resistant high-entropy alloys: A review. Metals, 7(2), 43.
  • Silva, L. G. M., Moreira, F. C., Souza, A. A. U., Souza, S. M., Boaventura, R. A. R., & Vilar, V. J. P. (2018). Chemical and electrochemical advanced oxidation processes as a polishing step for textile wastewater treatment: A study regarding the discharge into the environment and the reuse in the textile industry. Journal of Cleaner Production, 198, 430–442.
  • Thakur, C., Srivastava, V. C., & Mall, I. D. (2009). Electrochemical treatment of a distillery wastewater: Parametric and residue disposal study. Chemical Engineering Journal, 148(2–3), 496–505.
  • Vargel, C. (2020). Corrosion of aluminium. Elsevier.
  • Verma, A. K. (2017). Treatment of textile wastewaters by electrocoagulation employing Fe-Al composite electrode. Journal of Water Process Engineering, 20, 168–172.
  • Wang, J., Ji, Y., Zhang, F., Wang, D., He, X., & Wang, C. (2019). Treatment of coking wastewater using oxic-anoxic-oxic process followed by coagulation and ozonation. Carbon Resources Conversion, 2(2), 151–156.
Toplam 35 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gulizar Kurtoglu Akkaya 0000-0003-4779-0428

Gökhan Polat 0000-0003-0143-900X

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Kurtoglu Akkaya, G., & Polat, G. (2021). Treatment by Electrocoagulation of Congo red from Aqueous Solution Using Cantor Alloy. Avrupa Bilim Ve Teknoloji Dergisi(32), 791-796. https://doi.org/10.31590/ejosat.1041536