Araştırma Makalesi
BibTex RIS Kaynak Göster

ZnO-Kitosan Kompoziti ile Ağır Metal Giderimi

Yıl 2022, , 603 - 609, 07.05.2022
https://doi.org/10.31590/ejosat.1094734

Öz

Çalışmada Allium cepa (A. cepa) kabukları kullanılarak yeşil sentez ile ZnO partikülleri sentezlendi ve kitosan (Ch) ile oluşturulan ZnO- Ch kompozitin Nikel (II) (Ni (II)) giderim potansiyeli incelendi. Sentezlenen ZnO-Ch kompozitin taramalı elektron mikroskopisi (SEM), Fourier transform infrared (FTIR) ve X-ışını difraksiyonu (XRD) ile karakterizasyonu gerçekleştirildi. Çalışmada ZnO-Ch kompoziti ile kesikli sistemde Ni (II) adsorpsiyonu için pH (2,0-6,0), sıcaklık (25-55 oC), adsorban miktarı (0,25-1,0 g/L),temas süresi (15-1440 dk) ve başlangıç kirletici derişimi (20-300 mg/L) incelenerek optimum giderim koşulları incelenmiştir. Elde edilen optium koşullar pH 5,0, sıcaklık 25 0C, adsorban miktarı 0,5 g/L, temas süresi 300 dakika (dk) olarak belirlenmiştir. Ni (II) gideriminde kompozitin maksimum adsorpsiyon kapasitesi Langmuir izoterm modeline göre 222,22 mg/g olarak hesaplandı. Yapılan sıcaklık çalışmalarında artan sıcaklık ile adsorpsiyon kapasitesinin düşmesi sistemin ekzotermik olduğunu gösterdi.

Destekleyen Kurum

Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) tarafından desteklenmiştir.

Proje Numarası

M-669

Teşekkür

Bu çalışma, Sivas Cumhuriyet Üniversitesi Bilimsel Araştırma Projeleri (CÜBAP) tarafından M-669 proje numarası ile desteklenmiştir.

Kaynakça

  • Dananjaya, S. H. S., Kumar, R. S., Yang, M., Nikapitiya, C., Lee, J., & De Zoysa, M. (2018). Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. International journal of biological macromolecules, 108, 1281-1288.
  • Deliyanni, E. A., Lazaridis, N. K., Peleka, E. N., & Matis, K. A. (2004). Metals removal from aqueous solution by iron-based bonding agents. Environmental Science and Pollution Research, 11(1), 18-21.
  • Liu, D., Sun, D., & Li, Y. (2010). Removal of Cu (II) and Cd (II) from aqueous solutions by polyaniline on sawdust. Separation Science and Technology, 46(2), 321-329.
  • Liu, Z. R., & Zhou, S. Q. (2010). Adsorption of copper and nickel on Na-bentonite. Process safety and environmental protection, 88(1), 62-66.
  • Nguyen, N. V., Jeong, J., & Lee, J. C. (2013). Removal of chromium (VI) from the leachate of electronic scrap using non‐ionic Amberlite XAD‐7HP resin. Journal of Chemical Technology & Biotechnology, 88(6), 1014-1022.
  • Qiu, B., Xu, X. F., Deng, R. H., Xia, G. Q., Shang, X. F., & Zhou, P. H. (2019). Construction of chitosan/ZnO nanocomposite film by in situ precipitation. International journal of biological macromolecules, 122, 82-87.
  • Queiroz, M. F., Teodosio Melo, K. R., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2014). Does the use of chitosan contribute to oxalate kidney stone formation?. Marine drugs, 13(1), 141-158.
  • Abdel-Ghani, N. T., El-Chaghaby, G. A., & Helal, F. S. (2015). Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of advanced research, 6(3), 405-415.
  • Alabbad, E. A. (2021). Efficacy assessment of natural zeolite containing wastewater on the adsorption behaviour of Direct Yellow 50 from; equilibrium, kinetics and thermodynamic studies. Arabian Journal of Chemistry, 14(4), 103041.
  • Barati, A., Asgari, M., Miri, T., & Eskandari, Z. (2013). Removal and recovery of copper and nickel ions from aqueous solution by poly (methacrylamide-co-acrylic acid)/montmorillonite nanocomposites. Environmental Science and Pollution Research, 20(9), 6242-6255.
  • Barkat, M., Chegrouche, S., Mellah, A., Bensmain, B., Nibou, D., & Boufatit, M. (2014). Application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions. Journal of Surface Engineered Materials and Advanced Technology, 2014.
  • Betiha, M. A., Moustafa, Y. M., Mansour, A. S., Rafik, E., & El-Shahat, M. F. (2020). Nontoxic polyvinylpyrrolidone-propylmethacrylate-silica nanocomposite for efficient adsorption of lead, copper, and nickel cations from contaminated wastewater. Journal of Molecular Liquids, 314, 113656.
  • Boran, F. (2021). Encapsulation of CuO nanoparticles inside the channels of the multi-walled carbon nanotubes functionalized with thermal stress. Diamond and Related Materials, 114, 108306.
  • Boran, F., TAŞKIRAN, İ., & Çetinkaya, S. (2019). Poli (sodyum 4-stiren sülfonat) Kaplı SnO2 Nanoparçacıklarının Sentezi, Karakterizasyonu ve Gaz Algılama Özelliklerinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 412-422.
  • Chang, Y. S., Au, P. I., Mubarak, N. M., Khalid, M., Jagadish, P., Walvekar, R., & Abdullah, E. C. (2020). Adsorption of Cu (II) and Ni (II) ions from wastewater onto bentonite and bentonite/GO composite. Environmental Science and Pollution Research, 27(26), 33270-33296.
  • Çınar, S., Kaynar, Ü. H., Aydemir, T., Kaynar, S. C., & Ayvacıklı, M. (2017). An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads. International journal of biological macromolecules, 96, 459-465.
  • Erdem, S., Öztekin, M., & Açıkel, Y. S. (2021). Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nanocomposites and halloysite nanotubes/alginate hydrogel beads. Environmental Nanotechnology, Monitoring & Management, 16, 100576.
  • Gurel, L. (2010). senturk I, Bahadir T, Buyukgungor H (2010) Treatment of Nickel Plating Industrial Wastewater by Fungus Immobilized onto Rice Bran. J Microbial Biochem Technol, 2, 034-037.
  • Gürel, L. (2017). Applications of the biosorption process for nickel removal from aqueous solutions–A review. Chemical Engineering Communications, 204(6), 711-722.
  • Huang, C., Chung, Y. C., & Liou, M. R. (1996). Adsorption of Cu (II) and Ni (II) by pelletized biopolymer. Journal of Hazardous Materials, 45(2-3), 265-277.
  • Nesakumar, N., Rayappan, J. B. B., Jeyaprakas, B. G., & Krishnan, U. M. (2012). Influence of pH on structural morphology of ZnO nanoparticle. Journal of Applied Sciences, 12(16), 1758-1761.
  • Rajic, N., Stojakovic, D., Jovanovic, M., Logar, N. Z., Mazaj, M., & Kaucic, V. (2010). Removal of nickel (II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. Applied Surface Science, 257(5), 1524-1532.
  • Shamhari, N. M., Wee, B. S., Chin, S. F., & Kok, K. Y. (2018). Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chimica Slovenica, 65(3), 578-585.
  • Snell, F. D., & Snell, C. T. (1959). Colorimetric Methods of Ananysis: Including Photometric Methods by Forster Dee Snell. van Nostrand.
  • Yedurkar, S., Maurya, C., & Mahanwar, P. (2016). Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach. Open Journal of Synthesis Theory and Applications, 5(1), 1-14.

Heavy Metal Removal with ZnO-Chitosan Composite

Yıl 2022, , 603 - 609, 07.05.2022
https://doi.org/10.31590/ejosat.1094734

Öz

In the study, ZnO particles were synthesized by green synthesis using Allium cepa (A. cepa) shells and the Nickel (II) (Ni (II)) removal potential of the ZnO-Ch composite formed with chitosan (Ch) was investigated. Characterization of the synthesized ZnO-Ch composite was performed by scanning electron microscopy (SEM), Fourier transform infrared (FTIR) and X-ray diffraction (XRD). In the study, pH (2,0-6,0), temperature (25-55 oC), amount of adsorbent (0,,25-1,0 g/L), contact time for Ni (II) adsorption in batch system with ZnO-Ch composite. (15-1440 min) and initial pollutant concentration (20-300 mg/L) were examined and optimum removal conditions were investigated. The optimum conditions obtained were determined as pH 5,0, temperature 25 0C, amount of adsorbent 0,5 g/L, contact time 300 minutes (min). The maximum adsorption capacity of the composite in Ni (II) removal was calculated as 222,22 mg/g according to the Langmuir isotherm model. In temperature studies, the decrease in adsorption capacity with increasing temperature showed that the system was exothermic.

Proje Numarası

M-669

Kaynakça

  • Dananjaya, S. H. S., Kumar, R. S., Yang, M., Nikapitiya, C., Lee, J., & De Zoysa, M. (2018). Synthesis, characterization of ZnO-chitosan nanocomposites and evaluation of its antifungal activity against pathogenic Candida albicans. International journal of biological macromolecules, 108, 1281-1288.
  • Deliyanni, E. A., Lazaridis, N. K., Peleka, E. N., & Matis, K. A. (2004). Metals removal from aqueous solution by iron-based bonding agents. Environmental Science and Pollution Research, 11(1), 18-21.
  • Liu, D., Sun, D., & Li, Y. (2010). Removal of Cu (II) and Cd (II) from aqueous solutions by polyaniline on sawdust. Separation Science and Technology, 46(2), 321-329.
  • Liu, Z. R., & Zhou, S. Q. (2010). Adsorption of copper and nickel on Na-bentonite. Process safety and environmental protection, 88(1), 62-66.
  • Nguyen, N. V., Jeong, J., & Lee, J. C. (2013). Removal of chromium (VI) from the leachate of electronic scrap using non‐ionic Amberlite XAD‐7HP resin. Journal of Chemical Technology & Biotechnology, 88(6), 1014-1022.
  • Qiu, B., Xu, X. F., Deng, R. H., Xia, G. Q., Shang, X. F., & Zhou, P. H. (2019). Construction of chitosan/ZnO nanocomposite film by in situ precipitation. International journal of biological macromolecules, 122, 82-87.
  • Queiroz, M. F., Teodosio Melo, K. R., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2014). Does the use of chitosan contribute to oxalate kidney stone formation?. Marine drugs, 13(1), 141-158.
  • Abdel-Ghani, N. T., El-Chaghaby, G. A., & Helal, F. S. (2015). Individual and competitive adsorption of phenol and nickel onto multiwalled carbon nanotubes. Journal of advanced research, 6(3), 405-415.
  • Alabbad, E. A. (2021). Efficacy assessment of natural zeolite containing wastewater on the adsorption behaviour of Direct Yellow 50 from; equilibrium, kinetics and thermodynamic studies. Arabian Journal of Chemistry, 14(4), 103041.
  • Barati, A., Asgari, M., Miri, T., & Eskandari, Z. (2013). Removal and recovery of copper and nickel ions from aqueous solution by poly (methacrylamide-co-acrylic acid)/montmorillonite nanocomposites. Environmental Science and Pollution Research, 20(9), 6242-6255.
  • Barkat, M., Chegrouche, S., Mellah, A., Bensmain, B., Nibou, D., & Boufatit, M. (2014). Application of algerian bentonite in the removal of cadmium (II) and chromium (VI) from aqueous solutions. Journal of Surface Engineered Materials and Advanced Technology, 2014.
  • Betiha, M. A., Moustafa, Y. M., Mansour, A. S., Rafik, E., & El-Shahat, M. F. (2020). Nontoxic polyvinylpyrrolidone-propylmethacrylate-silica nanocomposite for efficient adsorption of lead, copper, and nickel cations from contaminated wastewater. Journal of Molecular Liquids, 314, 113656.
  • Boran, F. (2021). Encapsulation of CuO nanoparticles inside the channels of the multi-walled carbon nanotubes functionalized with thermal stress. Diamond and Related Materials, 114, 108306.
  • Boran, F., TAŞKIRAN, İ., & Çetinkaya, S. (2019). Poli (sodyum 4-stiren sülfonat) Kaplı SnO2 Nanoparçacıklarının Sentezi, Karakterizasyonu ve Gaz Algılama Özelliklerinin İncelenmesi. Avrupa Bilim ve Teknoloji Dergisi, (17), 412-422.
  • Chang, Y. S., Au, P. I., Mubarak, N. M., Khalid, M., Jagadish, P., Walvekar, R., & Abdullah, E. C. (2020). Adsorption of Cu (II) and Ni (II) ions from wastewater onto bentonite and bentonite/GO composite. Environmental Science and Pollution Research, 27(26), 33270-33296.
  • Çınar, S., Kaynar, Ü. H., Aydemir, T., Kaynar, S. C., & Ayvacıklı, M. (2017). An efficient removal of RB5 from aqueous solution by adsorption onto nano-ZnO/Chitosan composite beads. International journal of biological macromolecules, 96, 459-465.
  • Erdem, S., Öztekin, M., & Açıkel, Y. S. (2021). Investigation of tetracycline removal from aqueous solutions using halloysite/chitosan nanocomposites and halloysite nanotubes/alginate hydrogel beads. Environmental Nanotechnology, Monitoring & Management, 16, 100576.
  • Gurel, L. (2010). senturk I, Bahadir T, Buyukgungor H (2010) Treatment of Nickel Plating Industrial Wastewater by Fungus Immobilized onto Rice Bran. J Microbial Biochem Technol, 2, 034-037.
  • Gürel, L. (2017). Applications of the biosorption process for nickel removal from aqueous solutions–A review. Chemical Engineering Communications, 204(6), 711-722.
  • Huang, C., Chung, Y. C., & Liou, M. R. (1996). Adsorption of Cu (II) and Ni (II) by pelletized biopolymer. Journal of Hazardous Materials, 45(2-3), 265-277.
  • Nesakumar, N., Rayappan, J. B. B., Jeyaprakas, B. G., & Krishnan, U. M. (2012). Influence of pH on structural morphology of ZnO nanoparticle. Journal of Applied Sciences, 12(16), 1758-1761.
  • Rajic, N., Stojakovic, D., Jovanovic, M., Logar, N. Z., Mazaj, M., & Kaucic, V. (2010). Removal of nickel (II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite. Applied Surface Science, 257(5), 1524-1532.
  • Shamhari, N. M., Wee, B. S., Chin, S. F., & Kok, K. Y. (2018). Synthesis and characterization of zinc oxide nanoparticles with small particle size distribution. Acta Chimica Slovenica, 65(3), 578-585.
  • Snell, F. D., & Snell, C. T. (1959). Colorimetric Methods of Ananysis: Including Photometric Methods by Forster Dee Snell. van Nostrand.
  • Yedurkar, S., Maurya, C., & Mahanwar, P. (2016). Biosynthesis of zinc oxide nanoparticles using ixora coccinea leaf extract—a green approach. Open Journal of Synthesis Theory and Applications, 5(1), 1-14.
Toplam 25 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gamze Topal Canbaz 0000-0001-7615-7627

Unsal Açıkel 0000-0003-4969-8502

Yeşim Sağ Açıkel 0000-0002-3026-0933

Proje Numarası M-669
Yayımlanma Tarihi 7 Mayıs 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Topal Canbaz, G., Açıkel, U., & Sağ Açıkel, Y. (2022). ZnO-Kitosan Kompoziti ile Ağır Metal Giderimi. Avrupa Bilim Ve Teknoloji Dergisi(35), 603-609. https://doi.org/10.31590/ejosat.1094734