Araştırma Makalesi
BibTex RIS Kaynak Göster

Makine Öğrenmesi ve Derin Öğrenme Algoritmaları ile Baskı Devre Kartlarındaki Kusurların Tespiti

Yıl 2022, , 183 - 186, 30.11.2022
https://doi.org/10.31590/ejosat.1178188

Öz

Baskı devre kartları (PCB), elektronik bileşenleri bir arada tutan ve bu bileşenler arasındaki elektrik bağlantısını sağlayan elektronik devre kartlarıdır. Baskı devre kartları, dayanıklılık, daha az ısınma, minimum kablo kullanımı ve montaj kolaylığı gibi geleneksel kablolu devrelere göre birçok avantaj sunmaktadır. Baskı devre kartlarının doğru tasarımı ve üretimi baskı devre kartlarının kalitesini ve verimliliğini önemli ölçüde etkilemektedir. Bu çalışmada baskı devre kartlarının doğru bir şekilde üretilmesine ve hata oranının en aza indirilmesine yardımcı olmak için makine öğrenmesi ve derin öğrenme algoritmalarına dayalı kusur tespit sistemi önerilmiştir. Önerilen sistemde baskı devre üzerinde yer alan eksik delik, fare ısırığı, açık devre, kısa devre, çıkıntı ve sahte bakır kusurları tespit edilmiştir. Elde edilen sonuçlara göre YOLO-v4 ile %74.62, HOG+SVM ile %47.83, HOG+KNN ile %39.86 başarı doğrulukları elde edilmiştir. Çalışmada ele alınan algoritmaların baskı devre kartlarında kusur tespitinde uygulanabilir olduğu görülmüştür.

Kaynakça

  • Adibhatla, V. A., Chih, H. C., Hsu, C. C., Cheng, J., Abbod, M. F., & Shieh, J. S. (2020). Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electronics, 9(9), 1547. https://doi.org/10.3390/electronics9091547
  • Adibhatla, V. A., Shieh, J. S., Abbod, M. F., Chih, H. C., Hsu, C. C., & Cheng, J. (2018). Detecting defects in PCB using deep learning via convolution neural networks. In 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) (pp. 202-205). https://doi.org/10.1109/IMPACT.2018.8625828
  • Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152). https://doi.org/10.1145/130385.130401
  • Colab (2022). “Google Colaboratory”, Retrieved in September, 03, 2022 from https://colab.research.google.com
  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964
  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), 1, 886-893. https://doi.org/10.1109/CVPR.2005.177
  • Deng, Y. S., Luo, A. C., & Dai, M. J. (2018). Building an automatic defect verification system using deep neural network for pcb defect classification. In 2018 4th International Conference on Frontiers of Signal Processing (ICFSP) (pp. 145-149). https://doi.org/10.1109/ICFSP.2018.8552045
  • Ding, R., Dai, L., Li, G., & Liu, H. (2019). TDD‐net: a tiny defect detection network for printed circuit boards. CAAI Transactions on Intelligence Technology, 4(2), 110-116. https://doi.org/10.1049/trit.2019.0019
  • Fung, V. W., & Yung, K. C. (2020). An intelligent approach for improving printed circuit board assembly process performance in smart manufacturing. International Journal of Engineering Business Management, 12, 1847979020946189. https://doi.org/10.1177/1847979020946189
  • Hu, B., & Wang, J. (2020). Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. IEEE Access, 8, 108335-108345. https://doi.org/10.1109/ACCESS.2020.3001349
  • Hua, G., Huang, W., & Liu, H. (2018). Accurate image registration method for PCB defects detection. The Journal of Engineering, 2018(16), 1662-1667. https://doi.org/10.1049/joe.2018.8272
  • Huang, W., & Wei, P. (2019). A PCB dataset for defects detection and classification. arXiv preprint arXiv:1901.08204
  • Kaggle, (2022). “Kaggle”, Retrieved in September, 01, 2022 from https://www.kaggle.com/datasets/akhatova/pcb-defects
  • Liu, G., & Wen, H. (2021). Printed circuit board defect detection based on MobileNet-Yolo-Fast. Journal of Electronic Imaging, 30(4), 043004. https://doi.org/10.1117/1.JEI.30.4.043004
  • Santoso, A. D., Cahyono, F. B., Prahasta, B., Sutrisno, I., & Khumaidi, A. (2022). Development of PCB Defect Detection System Using Image Processing With YOLO CNN Method. International Journal of Artificial Intelligence Research, 6(1).
  • Sezer, A., & Altan, A. (2021). Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques. Soldering & Surface Mount Technology. https://doi.org/10.1108/SSMT-04-2021-0013
  • Tang, S., He, F., Huang, X., & Yang, J. (2019). Online PCB defect detector on a new PCB defect dataset. arXiv preprint arXiv:1902.06197
  • Tsai, D. M., & Huang, C. K. (2018). Defect detection in electronic surfaces using template-based Fourier image reconstruction. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(1), 163-172. https://doi.org/10.1109/TCPMT.2018.2873744
  • Volkau, I., Mujeeb, A., Wenting, D., Marius, E., & Alexei, S. (2019). Detection defect in printed circuit boards using unsupervised feature extraction upon transfer learning. In 2019 International Conference on Cyberworlds (CW) (pp. 101-108). https://doi.org/10.1109/CW.2019.00025
  • Zhang, C., Shi, W., Li, X., Zhang, H., & Liu, H. (2018). Improved bare PCB defect detection approach based on deep feature learning. The Journal of Engineering, 2018(16), 1415-1420. https://doi.org/10.1049/joe.2018.8275
  • Zhang, L., Jin, Y., Yang, X., Li, X., Duan, X., Sun, Y., & Liu, H. (2018). Convolutional neural network‐based multi‐label classification of PCB defects. The Journal of Engineering, 2018(16), 1612-1616. https://doi.org/10.1049/joe.2018.8279

Detection of Defects in Printed Circuit Boards with Machine Learning and Deep Learning Algorithms

Yıl 2022, , 183 - 186, 30.11.2022
https://doi.org/10.31590/ejosat.1178188

Öz

Printed Circuit Boards (PCBs) are electronic boards that hold electronic components together and provide the electrical connection between these components. Printed circuit boards offer many advantages over traditional wired circuits, such as durability, less heat, minimal wiring, and ease of assembly. Correct design and production of printed circuit boards significantly affect the quality and efficiency of printed circuit boards. In this study, a defect detection system based on machine learning and deep learning algorithms is proposed to help produce printed circuit boards accurately and minimize the error rate. In the proposed system, missing hole, mouse bite, open circuit, short, spur, and spurious copper defects on the printed circuit have been determined. According to the results obtained, According to the results obtained, success accuracies of 74.62% were obtained with YOLO-v4, 47.83% with HOG+SVM, and 39.86% with HOG+KNN. It has been seen that the algorithms discussed in the study are applicable in the detection of defects in printed circuit boards.

Kaynakça

  • Adibhatla, V. A., Chih, H. C., Hsu, C. C., Cheng, J., Abbod, M. F., & Shieh, J. S. (2020). Defect detection in printed circuit boards using you-only-look-once convolutional neural networks. Electronics, 9(9), 1547. https://doi.org/10.3390/electronics9091547
  • Adibhatla, V. A., Shieh, J. S., Abbod, M. F., Chih, H. C., Hsu, C. C., & Cheng, J. (2018). Detecting defects in PCB using deep learning via convolution neural networks. In 2018 13th International Microsystems, Packaging, Assembly and Circuits Technology Conference (IMPACT) (pp. 202-205). https://doi.org/10.1109/IMPACT.2018.8625828
  • Bochkovskiy, A., Wang, C. Y., & Liao, H. Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934.
  • Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory (pp. 144-152). https://doi.org/10.1145/130385.130401
  • Colab (2022). “Google Colaboratory”, Retrieved in September, 03, 2022 from https://colab.research.google.com
  • Cover, T., & Hart, P. (1967). Nearest neighbor pattern classification. IEEE transactions on information theory, 13(1), 21-27. https://doi.org/10.1109/TIT.1967.1053964
  • Dalal, N., & Triggs, B. (2005). Histograms of oriented gradients for human detection. In 2005 IEEE computer society conference on computer vision and pattern recognition (CVPR'05), 1, 886-893. https://doi.org/10.1109/CVPR.2005.177
  • Deng, Y. S., Luo, A. C., & Dai, M. J. (2018). Building an automatic defect verification system using deep neural network for pcb defect classification. In 2018 4th International Conference on Frontiers of Signal Processing (ICFSP) (pp. 145-149). https://doi.org/10.1109/ICFSP.2018.8552045
  • Ding, R., Dai, L., Li, G., & Liu, H. (2019). TDD‐net: a tiny defect detection network for printed circuit boards. CAAI Transactions on Intelligence Technology, 4(2), 110-116. https://doi.org/10.1049/trit.2019.0019
  • Fung, V. W., & Yung, K. C. (2020). An intelligent approach for improving printed circuit board assembly process performance in smart manufacturing. International Journal of Engineering Business Management, 12, 1847979020946189. https://doi.org/10.1177/1847979020946189
  • Hu, B., & Wang, J. (2020). Detection of PCB surface defects with improved faster-RCNN and feature pyramid network. IEEE Access, 8, 108335-108345. https://doi.org/10.1109/ACCESS.2020.3001349
  • Hua, G., Huang, W., & Liu, H. (2018). Accurate image registration method for PCB defects detection. The Journal of Engineering, 2018(16), 1662-1667. https://doi.org/10.1049/joe.2018.8272
  • Huang, W., & Wei, P. (2019). A PCB dataset for defects detection and classification. arXiv preprint arXiv:1901.08204
  • Kaggle, (2022). “Kaggle”, Retrieved in September, 01, 2022 from https://www.kaggle.com/datasets/akhatova/pcb-defects
  • Liu, G., & Wen, H. (2021). Printed circuit board defect detection based on MobileNet-Yolo-Fast. Journal of Electronic Imaging, 30(4), 043004. https://doi.org/10.1117/1.JEI.30.4.043004
  • Santoso, A. D., Cahyono, F. B., Prahasta, B., Sutrisno, I., & Khumaidi, A. (2022). Development of PCB Defect Detection System Using Image Processing With YOLO CNN Method. International Journal of Artificial Intelligence Research, 6(1).
  • Sezer, A., & Altan, A. (2021). Detection of solder paste defects with an optimization‐based deep learning model using image processing techniques. Soldering & Surface Mount Technology. https://doi.org/10.1108/SSMT-04-2021-0013
  • Tang, S., He, F., Huang, X., & Yang, J. (2019). Online PCB defect detector on a new PCB defect dataset. arXiv preprint arXiv:1902.06197
  • Tsai, D. M., & Huang, C. K. (2018). Defect detection in electronic surfaces using template-based Fourier image reconstruction. IEEE Transactions on Components, Packaging and Manufacturing Technology, 9(1), 163-172. https://doi.org/10.1109/TCPMT.2018.2873744
  • Volkau, I., Mujeeb, A., Wenting, D., Marius, E., & Alexei, S. (2019). Detection defect in printed circuit boards using unsupervised feature extraction upon transfer learning. In 2019 International Conference on Cyberworlds (CW) (pp. 101-108). https://doi.org/10.1109/CW.2019.00025
  • Zhang, C., Shi, W., Li, X., Zhang, H., & Liu, H. (2018). Improved bare PCB defect detection approach based on deep feature learning. The Journal of Engineering, 2018(16), 1415-1420. https://doi.org/10.1049/joe.2018.8275
  • Zhang, L., Jin, Y., Yang, X., Li, X., Duan, X., Sun, Y., & Liu, H. (2018). Convolutional neural network‐based multi‐label classification of PCB defects. The Journal of Engineering, 2018(16), 1612-1616. https://doi.org/10.1049/joe.2018.8279
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Volkan Kaya 0000-0001-6940-3260

İsmail Akgül 0000-0003-2689-8675

Yayımlanma Tarihi 30 Kasım 2022
Yayımlandığı Sayı Yıl 2022

Kaynak Göster

APA Kaya, V., & Akgül, İ. (2022). Detection of Defects in Printed Circuit Boards with Machine Learning and Deep Learning Algorithms. Avrupa Bilim Ve Teknoloji Dergisi(41), 183-186. https://doi.org/10.31590/ejosat.1178188