Araştırma Makalesi
BibTex RIS Kaynak Göster

Bandırma’da Tavuk Çiftliklerinin Dış Duvarları İçin Optimum Yalıtım Kalınlığının Araştırılması

Yıl 2021, , 890 - 897, 30.11.2021
https://doi.org/10.31590/ejosat.909830

Öz

Bandırma ekonomisinde tavukçuluk tesisleri önemli bir yer tutmaktadır. Bu çalışmada Bandırma’da bulunan tavuk tesisi binaları dış duvarları için optimum yalıtım kalınlığı, enerji tasarrufu, geri ödeme süresi ve CO2 emisyonları araştırılmıştır. Beş farklı yakıta (doğalgaz, kömür, LPG, fuel oil ve elektrik) göre hesaplamalar yapılmıştır. İki farklı yalıtım malzemesi(Expanded Polistren ve Extruded Polistren) kullanılmıştır. Yaşam döngüsü maliyet analizi (LCCA) metodu uygulanmıştır. Hesaplamalarda temel alınan denge sıcaklığı, etlik piliçlerin 6 haftalık üretim sezonu boyunca ihtiyaç duyduğu sıcaklık değerleri (Ttemel =31, 29, 25, 23.50, 22.50 ve 20.50°C) dir. Bu denge sıcaklıklarına göre hesaplanan derece gün değerleri ısıtma için 3111, soğutma için 79 olarak elde edilmiştir. Sonuçlarda, optimum yalıtım kalınlığının ısıtmada 0.065-0.233 aralığında değiştiği görülmektedir. Tasarruf miktarı ve geri ödeme süresi ise sırasıyla 17.75-122 $/m2 ve 1.72-1.20 yıl aralığında değişmektedir. Optimum yalıtım kalınlığı uygulanması durumunda yakıt miktarında ve CO2 emisyonlarında ise %80-90 oranında azalma sağlanabileceği hesaplanmıştır. Bu çalışma ile Bandırma'nın tavukçuluk sektöründe önemli bir yer kazanmasına katkıda bulunmak amaçlanmıştır.

Kaynakça

  • Emin ARITÜRK, Ahmet ERGÜN, Sakine YALÇIN, The Relationship Between Poultry and Environmental Temperature, Lalahan Zoot. Arast. Enst. Derg. 1986, 26 (1-4) 42-52.
  • Emine ÖZDEMİR, Öznur POYRAZ, Insulation of Poultry Houses, Lalahan Hay. Arast. Enst. Derg. 1997, 37 (2) 91-108.
  • Hasan, A., (1999). Optimizing insulation thickness for buildings using life cycle cost. Applied Energy, 63(2), 115-124.
  • Kanakli, O., (2008). A study on residential heating energy requirement and optimum insulation thickness. Renewable Energy, 33, 1164-1172.
  • Ucar, A., Balo, F., (2010). Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls. Renewable Energy, 35, 88-94.
  • Alsayed, MF., Tayeh, RA., (2019). Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings. Journal of Building Engineering, 22, 101-112.
  • Kurekci, NA., (2016). Determination of optimum insulation thickness for building walls byusing heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings, 118, 197-213.
  • Aynur Uçar, Muhammed Usame Dumrul, Determination of optimum insulation thickness and energy saving analysis according to heating and cooling loads for exterior walls of a house in Malatya, European Journal of Science and Technology, No. 16, pp. 740-749, August 2019.
  • X. Liu, Y. Chen, H. Ge, P. Fazio, G. Chena, X. Guoda, Determination of optimum insulation thickness for building wallswith moisture transfer in hot summer and cold winter zone of China, Energy and Buildings 109 (2015) 361-368.
  • I. Axaopoulos, P. Axaopoulos, G. Panayiotou, S. Kalogirou, J. Gelegenis, Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics, Energy 90 (2015) 939-952.
  • Büyükalaca O, Bulut H, Yılmaz T. Analysis of variable-base heating and cooling degree-days for Turkey. Appl Energy 2001;69(4):269-83.
  • Eto JH. On using degree-days to account for the effects of weather on annual energy use in office buildings. Energy Build 1988;12(2):113-27.
  • Erdem Küçüktopcu, Bilal Cemek, A study on environmental impact of insulation thickness of poultry building walls, Energy 150 (2018) 583- 590.
  • De Rosa M, Bianco V, Scarpa F, Tagliafico LA. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach. Appl energy 2014;128:217- 29.
  • Christenson M, Manz H, Gyalistras D. Climate warming impact on degree-days and building energy demand in Switzerland. Energy Convers Manag 2006;47(6):671-86.
  • Matzarakis A, Balafoutis C. Heating degree-days over Greece as an index of energy consumption. Int J Climatol 2004;24(14):1817- 28.
  • A. Bolatturk, Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey, Building and Environment 43 (2008) 1055-1064.
  • N. Sisman, E. Kahya, N. Aras, H. Aras, Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’ different degree-day regions, Energy Policy 35 (2007) 5151-5155.
  • http://www.canakkalegaz.com.tr/turkish/2019.
  • http://www.izocam.com.tr, Insulation Unit Prices, 2020.
  • The Central Bank of the Republic of Turkey (TCMB), (2020), http://www.tcmb.gov.tr/
  • Turkish Statistical Institute (TUIK), (2020), http://www.tuik.gov.tr/

Investigation of Optimum Insulation Thickness for External Walls of Poultry Farms in Bandırma

Yıl 2021, , 890 - 897, 30.11.2021
https://doi.org/10.31590/ejosat.909830

Öz

Poultry plants have an important place in the economy of Bandırma. This study examined the optimum thickness of insulation, energy saving, payback period, and emissions of CO2 for poultry plant buildings' external walls in Bandırma. Calculations were based on five various fuels (natural gas, coal, LPG, electricity, and fuel oil). This study used two various insulation materials (Expanded Polystyrene and Extruded Polystyrene) were used. The Life Cycle Cost method has been applied as the approach. The equilibrium temperature, on which the calculations were based, was the temperature values required by broilers during the 6-week production season (Tbase= 31, 29, 25, 23.50, 22.50 and, 20.50°C). The degree day values calculated according to these equilibrium temperatures were obtained as 3111 for heating and 79 for cooling. The results showed that the optimum thickness of insulation varied in the range of 0.065-0.233 in heating. The amount of savings and payback period vary between 17.75-122 $/m2 and 1.72-1.20 years, respectively. It was calculated that a reduction by 80-90% in fuel quantity and CO2 emissions could be achieved after application of the optimum insulation thickness. This study aims to contribute to Bandırma's becoming an important place in the poultry sector.

Kaynakça

  • Emin ARITÜRK, Ahmet ERGÜN, Sakine YALÇIN, The Relationship Between Poultry and Environmental Temperature, Lalahan Zoot. Arast. Enst. Derg. 1986, 26 (1-4) 42-52.
  • Emine ÖZDEMİR, Öznur POYRAZ, Insulation of Poultry Houses, Lalahan Hay. Arast. Enst. Derg. 1997, 37 (2) 91-108.
  • Hasan, A., (1999). Optimizing insulation thickness for buildings using life cycle cost. Applied Energy, 63(2), 115-124.
  • Kanakli, O., (2008). A study on residential heating energy requirement and optimum insulation thickness. Renewable Energy, 33, 1164-1172.
  • Ucar, A., Balo, F., (2010). Determination of the energy savings and the optimum insulation thickness in the four different insulated exterior walls. Renewable Energy, 35, 88-94.
  • Alsayed, MF., Tayeh, RA., (2019). Life cycle cost analysis for determining optimal insulation thickness in Palestinian buildings. Journal of Building Engineering, 22, 101-112.
  • Kurekci, NA., (2016). Determination of optimum insulation thickness for building walls byusing heating and cooling degree-day values of all Turkey’s provincial centers. Energy and Buildings, 118, 197-213.
  • Aynur Uçar, Muhammed Usame Dumrul, Determination of optimum insulation thickness and energy saving analysis according to heating and cooling loads for exterior walls of a house in Malatya, European Journal of Science and Technology, No. 16, pp. 740-749, August 2019.
  • X. Liu, Y. Chen, H. Ge, P. Fazio, G. Chena, X. Guoda, Determination of optimum insulation thickness for building wallswith moisture transfer in hot summer and cold winter zone of China, Energy and Buildings 109 (2015) 361-368.
  • I. Axaopoulos, P. Axaopoulos, G. Panayiotou, S. Kalogirou, J. Gelegenis, Optimal economic thickness of various insulation materials for different orientations of external walls considering the wind characteristics, Energy 90 (2015) 939-952.
  • Büyükalaca O, Bulut H, Yılmaz T. Analysis of variable-base heating and cooling degree-days for Turkey. Appl Energy 2001;69(4):269-83.
  • Eto JH. On using degree-days to account for the effects of weather on annual energy use in office buildings. Energy Build 1988;12(2):113-27.
  • Erdem Küçüktopcu, Bilal Cemek, A study on environmental impact of insulation thickness of poultry building walls, Energy 150 (2018) 583- 590.
  • De Rosa M, Bianco V, Scarpa F, Tagliafico LA. Heating and cooling building energy demand evaluation; a simplified model and a modified degree days approach. Appl energy 2014;128:217- 29.
  • Christenson M, Manz H, Gyalistras D. Climate warming impact on degree-days and building energy demand in Switzerland. Energy Convers Manag 2006;47(6):671-86.
  • Matzarakis A, Balafoutis C. Heating degree-days over Greece as an index of energy consumption. Int J Climatol 2004;24(14):1817- 28.
  • A. Bolatturk, Optimum insulation thicknesses for building walls with respect to cooling and heating degree-hours in the warmest zone of Turkey, Building and Environment 43 (2008) 1055-1064.
  • N. Sisman, E. Kahya, N. Aras, H. Aras, Determination of optimum insulation thicknesses of the external walls and roof (ceiling) for Turkey’ different degree-day regions, Energy Policy 35 (2007) 5151-5155.
  • http://www.canakkalegaz.com.tr/turkish/2019.
  • http://www.izocam.com.tr, Insulation Unit Prices, 2020.
  • The Central Bank of the Republic of Turkey (TCMB), (2020), http://www.tcmb.gov.tr/
  • Turkish Statistical Institute (TUIK), (2020), http://www.tuik.gov.tr/
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Asiye Aslan 0000-0002-1173-5008

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Aslan, A. (2021). Investigation of Optimum Insulation Thickness for External Walls of Poultry Farms in Bandırma. Avrupa Bilim Ve Teknoloji Dergisi(27), 890-897. https://doi.org/10.31590/ejosat.909830