Araştırma Makalesi
BibTex RIS Kaynak Göster

60Co Radyoaktif Nokta Kaynaği ile Uçucu Külün Gama Radyasyon Koruma Özellikleri

Yıl 2021, , 145 - 151, 30.11.2021
https://doi.org/10.31590/ejosat.949686

Öz

Gelişmekte olan beton teknolojisi sayesinde hafif beton ve uçucu kül betonla ilgili birçok alanda kullanılabilmektedir. Dünyanın güncel sorunlarından olan radyasyondan, korunmak için birçok araştırmacı uçucu külü kullanmış fakat çok az sayıda araştırmacı hafif beton üzerinde çalışmıştır. Radyasyonun etkilerinden korunmak için araştırmacılar ağır beton ve ağır agregalar kullanılarak gama ışını soğurma miktarlarını incelenmiştir. Bu çalışmada c sınıfı uçucu kül, çimento yerine %30-50-100 dozajlarında kullanılarak 3 farklı hafif beton hazırlanmıştır. 50*50*50 mm boyutlarında hazırlanan kompozit bloklar üzerinde yoğunluk ve basınç dayanımı deneyleri yapılmış, doğrusal zayıflama katsayısı (cm-1), kütle zayıflama katsayısı (MAC) ve onuncu katman değeri (TVL) (cm) gibi radyasyon etkileşim parametreleri ölçülmüştür. Radyasyon etkileşim parametreleri HP Ge gama dedektörü kullanılarak elde edilmiştir. Radyasyon ölçümleri için 1173 keV (60Co) ve 1332 keV (60Co) olarak 2 farklı foton enerjisi kullanılmıştır. Yapılan çalışmalar sonucunda uçucu kül içeriği arttıkça basınç dayanımının azaldığı, hazırlanan kompozitlerinden %100 uçucu kül içeren örneklerin basınç dayanımının en az olduğu, uçucu kül miktarı düştükçe yoğunluğun arttığı belirlenmiştir. Hazırlanan kompozitlerde enerji seviyeleri arttıkça doğrusal zayıflama katsayısı arttığı görülmüştür. Bu çalışma sayesinde birçok alanda kullanılan uçucu küllerin radyasyon kalkanı olarak kullanılabileceği ortaya konmuştur. Ayrıca bu çalışma ile radyasyon kalkanı üretiminde, ağır agrega kullanılmaması ve hafif beton üretilmesi nedeni ile kalkan üretim maliyeti önemli derecede düşecektir.

Kaynakça

  • Ahmedzade, P.; Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete, J. Hazard. Mater., 165, 300–305.
  • Akkurt, I.; Mavi, B.; Akkurt, A.; Basyigit, C.; Kilinsarslan, S.; Yalim H.A. (2005). Study on Z-dependence of partial and total mass attenuation coefficients J. Quant. Spectrosc. Radiat., 379-385.
  • Alwaeli, M. (2016) The implementation of scale and steel chips waste as a replacement for raw sand in concrete manufacturing, J. Clean. Prod., 137,1038–1044.
  • Ameri, F.; Brito, J.; Madhkhan, M.; Taheri, R.A. Steel fibre-reinforced high-strength concrete incorporating copper slag: Mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics Journal of Building Engineering 2020, 101-118 . Belgin EE, Aycik GA (2017) Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation J Radioanal Nucl Chem 311, 1953–1961 https://doi.org/10.1007/s10967-016-5156-z
  • Bureau of Indian Standards, Indian Standard: Concrete Mix Proportioning – Guidelines (First Revision) 2009, http://www.mis.wbprd.gov.in/Engineering/ Codes/IS10262.pdf.
  • Çelik, N. Determination of the dependence of HPGe virtual point detector location on source dimensions in 60 keV–2 MeV range using Monte Carlo simulation, Journal of Instrumentation 2012, 7.
  • Çullu, M.; Bakırhan E. Investigation of radiation absorption coefficients of lead-zinc mine waste rock mixed heavy concrete at 662–1460 keV energy range Constr. Build. Mater. 2018, 173, 17-27
  • Davraz, M.; Pehlivanoglu, H.E.; Kilincarslan, S.; Akkurt, I. Determination of radiation shielding of concrete produced from Portland cement with boron additives, Acta Phys. Pol. 2017, 132,702-704.
  • Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A novel comprehensive utilization of vanadium slag: as gamma ray shielding material, J. Hazard. Mater. 2016, 318, 751–757.
  • Elalaily, N.A.; Abou-Hussien E. M.; Saad, E.A. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material, Radiation Effects and Defects in Solids 2016, 840-854.
  • El-Mahllawy, M.S. Characteristics of acid resisting bricks made from quarry residues and waste steel slag, Constr. Build. Mater. 2008, 221887–1896.
  • Esen, Y.; Dogan, Z.M. Investigation of usability of limonite aggregate in heavyweight concrete production, Prog. Nucl. Energy 2008, 105, 185–193.
  • Faramawy, N.E.; Ramadan, W.; Zakla, T.E.; Sayed, M.; Dessouky, M.E. and Sakr, K. Effect of ilmenite on the attenuation coefficient of gamma ray shielding cementious matrix, Radiation Effects and Defects in Solids. 2015, 876-886.
  • Gerasimova, E. The Effect of Fe2O3 on the Mechanical Properties of the Polymer Modified Cement Containing Fly Ash, Procedia Eng. 2016, 150, 1553-1557.
  • Gökçe, H.S.; Canbaz, Ö.B.; Çam, N.F.; Çakır, A.Ö. Natural radioactivity of barite concrete shields containing commonly used supplementary materials, Construction and Building Materials 2020, 236, 10, 117569.
  • Hassan, H.E.; Badran, H.M.; Aydarous, A.; Sharshar T. Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays Nucl. Instrum. Methods Phys. Res. 2015, 360, 81-89.
  • Horszczaruk, E.; Sikora, P.; Zaporowski, P. Mechanical properties of shielding concrete with magnetite aggregate subjected to high temperature, Procedia Eng. 2015, 108,39–46.
  • Ignjatovic, I.; Sas, Z.; Dragas, J.;Somlai, J.; Kovacs, T. Radiological and material characterization of high volume fly ash concrete, Journal of Environmental Radioactivity 2017, 168, 38-45.
  • Junior, T.A.A.; Nogueira, M.S.; Vivolo, V.; Potiens, M.P.A.; Campos L.L. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation Radiat. Phys. Chem. 2017, 140, 349-354.
  • Kilincarslan, S.; Akkurt, I.; Basyigit, C. The effect of barite rate on some physical and mechanical properties of concrete, Mater. Sci. Eng. 2006, 424, 83-86.
  • Kishore, K. Sand For Concrete From Steel Mills Induction Furnace Waste Slag. 2013.
  • Koksal, O.K.; Apaydin, G.; Tozar, A.; Karahan, I.H.; Cengiz, E. Assessment of the mass attenuation parameters with using gamma-rays for manganese substituted nano hydroxyapatite. Mixture proportions, 2019, 159, 76-80.
  • Külekçi G. “Investigation of the utilization areas of construction and demolition wastes in the black sea region instead of aggregate and their areas of usage in the mining industry”, KTÜ, Institute of science, PHD dissertation, Trabzon, 2018.
  • Külekçi, G. “The Effect of Pozzolans and Mineral Wastes on Alkali-silica Reaction in Recycled Aggregated Mortar”, Periodica Polytechnica Civil Engineering, 2021. https://doi.org/10.3311/PPci.17355
  • Külekçi, G. Investigation of the utility of the waste brick and marble powders on the paste backfill , master's thesis, Karadeniz Technical University, 2013
  • Külekçi, G., Erçikdi, B., Aliyazicioğlu, Ş. Effect of waste brick as mineral admixture on the mechanical performance of cemented paste backfill, IOP Conference Series: Earth and Environmental Science, 2018, 44 (4), 042039.
  • Lee, J.W.; Kweon D.C. Evaluation of radiation dose reduction by barium composite shielding in an angiography system, Radiation Effects and Defects in Solids, 2020.
  • Mann HS, Brar GS, Mann KS, Mudahar GS (2016) Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding. Nuclear Engineering and Technology 48(5), 1230-1236
  • Mehta PK, Monteiro PJM (2006) Concrete: Microstructure, Properties and Materials. McGraw-Hill, New York, NY, USA, 3rd edition
  • Mheemeed AK, Hasan HI, Al-Jomaily FM (2012) Gamma-ray absorption using rubber—lead mixtures as radiation protection shields. J Radioanal Nucl Chem 291, 653–659 https://doi.org/10.1007/s10967-011-1556-2
  • Nadeem, M.; Pofale, A. Experimental investigation of using slag as an alternative to normal aggregates (coarse and fine) in concrete, Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. 2012, 3, 117–127.
  • Nikbin, I.M.; Mohebbi, R.; Dezhampanah, S.; Mehdipour, S.; Mohammadi, R.; Nejat T. Gamma ray shielding properties of heavy-weight concrete containing Nano-TiO2 Radiat. Phys. Chem. 2019, 162, 157-167.
  • Omran, O.L.; Sadrmomtazi, A.; Nikbin, I.M. A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete Construction and Building Materials 2019, 229, 116905.
  • Ouda, A.S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding, Prog. Nucl. Energy 2015, 79, 48–55.
  • Rondi, L.; Bregoli, G.; Sorlini, S.; Cominoli, L.; Collivignarelli, C.; Plizzari, G. Concrete with EAF steel slag as aggregate: a comprehensive technical and environmental characterisation, Compos. Part B Eng. 2016, 90, 195–202.
  • Sanjuán MÁ, Suarez-Navarro JA, Argiz C. et al. (2021) Radiation dose calculation of fine and coarse coal fly ash used for building purposes J Radioanal Nucl Chem 327, 1045–1054. https://doi.org/10.1007/s10967-020-07578-8
  • Sarkar, R.; Singh, N.; Das, S.K. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles, Bull. Mater. Sci. 2010, 33, 293–298.
  • Sayyed, M.I.; El-Mallawany, R.; Shielding properties of (100-x) TeO2-(x)MoO3 glasses. Mater. Chem. Phys. 2017, 201, 50–56.
  • Singh K, Singh S, Singh G (2014) Effect of Fly ash Addition on Mechanical and Gamma Radiation Shielding Properties of Concrete. Journal of Energy 7
  • Singh, K.; Singh, C.; Sidhu, G.S.; Singh, J.; Singh, P.S.; Mudahar, G.S. Fly ash: a radiation shielding material, Indian Journal of Physics, 2003, 77A, 41–45.
  • Singh, V.P.; Medhat, M.E.; Badiger, N.M.; Rahman A.Z.M.S. Radiation shielding effectiveness of newly developed super conductors Radiat. Phys. Chem. 2015, 106, 175-183.
  • Tekin, H.O.; Kavaz, E.; Sayyed, M.I.; Agar, O.; Kamislioglu, M.; Altunsoy Guclu E.E. and Eke C. An extensive study on nuclear shielding performance and mass stopping power (MSP)/projected ranges (PR) of some selected granite samples, Radiation Effects and Defects in Solids, 2020.
  • TS EN 206:2013+A1, Concrete - Specification, performance, production and conformity, Turkish Standard, Turkey 2017. TS EN 2823, Standard Members of Pumice, Definitions and Requirements, Ankara, 2011.
  • Wongso, P.M.; Dewang, S.; Jumpeno, B.Y.E.B.; Firmansyah, O.A.; Mellawati, J. Experimental Study of Concrete Composites of Fly Ash and Ferronickel Slag for Gamma-Ray Shielding, A Scientific Journal for The Applications of Isotopes and Radiation 2020, 16, 1.

Gamma Radiation Shielding Properties of Fly Ash With 60Co Radioactive Point Source

Yıl 2021, , 145 - 151, 30.11.2021
https://doi.org/10.31590/ejosat.949686

Öz

With the help of the developing concrete technology, light concrete and fly ash may be used in several concrete-related fields. In this study, by using Class C fly ash at the doses of 30-50-100% instead of cement, 3 different light concretes were prepared. Density and compressive strength experiments were conducted on the composite blocks prepared with dimensions of 50*50*50 mm, and linear absorption coefficients (cm-1), mass attenuation coefficients (MAC) and Tenth value layer (TVL) radiation interaction parameters were measured. Radiation interaction parameters were obtained using an HP Ge gamma detector. For radiation measurements, 2 different photon energies as 1173 keV (60Co), and 1332 keV (60Co) were used. As a result of the analyses, it was determined that compressive strength decreased as the fly ash content increased, the lowest compressive strength values were obtained in the samples containing 100% fly ash among the prepared composites, and density increased as the fly ash content decreased. It was observed that, in the prepared composites, as the energy levels increased, the linear absorption coefficients also increased. With this study, it was revealed that fly ashes that are used in many fields could be used as a radiation shield. Additionally, with this study, due to not using heavy aggregates and due to production of light concrete in the production of radiation shields, the cost of shield production will significantly decrease

Kaynakça

  • Ahmedzade, P.; Sengoz, B. (2009). Evaluation of steel slag coarse aggregate in hot mix asphalt concrete, J. Hazard. Mater., 165, 300–305.
  • Akkurt, I.; Mavi, B.; Akkurt, A.; Basyigit, C.; Kilinsarslan, S.; Yalim H.A. (2005). Study on Z-dependence of partial and total mass attenuation coefficients J. Quant. Spectrosc. Radiat., 379-385.
  • Alwaeli, M. (2016) The implementation of scale and steel chips waste as a replacement for raw sand in concrete manufacturing, J. Clean. Prod., 137,1038–1044.
  • Ameri, F.; Brito, J.; Madhkhan, M.; Taheri, R.A. Steel fibre-reinforced high-strength concrete incorporating copper slag: Mechanical, gamma-ray shielding, impact resistance, and microstructural characteristics Journal of Building Engineering 2020, 101-118 . Belgin EE, Aycik GA (2017) Effect of particle size of mineral fillers on polymer-matrix composite shielding materials against ionizing electromagnetic radiation J Radioanal Nucl Chem 311, 1953–1961 https://doi.org/10.1007/s10967-016-5156-z
  • Bureau of Indian Standards, Indian Standard: Concrete Mix Proportioning – Guidelines (First Revision) 2009, http://www.mis.wbprd.gov.in/Engineering/ Codes/IS10262.pdf.
  • Çelik, N. Determination of the dependence of HPGe virtual point detector location on source dimensions in 60 keV–2 MeV range using Monte Carlo simulation, Journal of Instrumentation 2012, 7.
  • Çullu, M.; Bakırhan E. Investigation of radiation absorption coefficients of lead-zinc mine waste rock mixed heavy concrete at 662–1460 keV energy range Constr. Build. Mater. 2018, 173, 17-27
  • Davraz, M.; Pehlivanoglu, H.E.; Kilincarslan, S.; Akkurt, I. Determination of radiation shielding of concrete produced from Portland cement with boron additives, Acta Phys. Pol. 2017, 132,702-704.
  • Dong, M.; Xue, X.; Yang, H.; Liu, D.; Wang, C.; Li, Z. A novel comprehensive utilization of vanadium slag: as gamma ray shielding material, J. Hazard. Mater. 2016, 318, 751–757.
  • Elalaily, N.A.; Abou-Hussien E. M.; Saad, E.A. Bismuth silicate glass containing heavy metal oxide as a promising radiation shielding material, Radiation Effects and Defects in Solids 2016, 840-854.
  • El-Mahllawy, M.S. Characteristics of acid resisting bricks made from quarry residues and waste steel slag, Constr. Build. Mater. 2008, 221887–1896.
  • Esen, Y.; Dogan, Z.M. Investigation of usability of limonite aggregate in heavyweight concrete production, Prog. Nucl. Energy 2008, 105, 185–193.
  • Faramawy, N.E.; Ramadan, W.; Zakla, T.E.; Sayed, M.; Dessouky, M.E. and Sakr, K. Effect of ilmenite on the attenuation coefficient of gamma ray shielding cementious matrix, Radiation Effects and Defects in Solids. 2015, 876-886.
  • Gerasimova, E. The Effect of Fe2O3 on the Mechanical Properties of the Polymer Modified Cement Containing Fly Ash, Procedia Eng. 2016, 150, 1553-1557.
  • Gökçe, H.S.; Canbaz, Ö.B.; Çam, N.F.; Çakır, A.Ö. Natural radioactivity of barite concrete shields containing commonly used supplementary materials, Construction and Building Materials 2020, 236, 10, 117569.
  • Hassan, H.E.; Badran, H.M.; Aydarous, A.; Sharshar T. Studying the effect of nano lead compounds additives on the concrete shielding properties for γ-rays Nucl. Instrum. Methods Phys. Res. 2015, 360, 81-89.
  • Horszczaruk, E.; Sikora, P.; Zaporowski, P. Mechanical properties of shielding concrete with magnetite aggregate subjected to high temperature, Procedia Eng. 2015, 108,39–46.
  • Ignjatovic, I.; Sas, Z.; Dragas, J.;Somlai, J.; Kovacs, T. Radiological and material characterization of high volume fly ash concrete, Journal of Environmental Radioactivity 2017, 168, 38-45.
  • Junior, T.A.A.; Nogueira, M.S.; Vivolo, V.; Potiens, M.P.A.; Campos L.L. Mass attenuation coefficients of X-rays in different barite concrete used in radiation protection as shielding against ionizing radiation Radiat. Phys. Chem. 2017, 140, 349-354.
  • Kilincarslan, S.; Akkurt, I.; Basyigit, C. The effect of barite rate on some physical and mechanical properties of concrete, Mater. Sci. Eng. 2006, 424, 83-86.
  • Kishore, K. Sand For Concrete From Steel Mills Induction Furnace Waste Slag. 2013.
  • Koksal, O.K.; Apaydin, G.; Tozar, A.; Karahan, I.H.; Cengiz, E. Assessment of the mass attenuation parameters with using gamma-rays for manganese substituted nano hydroxyapatite. Mixture proportions, 2019, 159, 76-80.
  • Külekçi G. “Investigation of the utilization areas of construction and demolition wastes in the black sea region instead of aggregate and their areas of usage in the mining industry”, KTÜ, Institute of science, PHD dissertation, Trabzon, 2018.
  • Külekçi, G. “The Effect of Pozzolans and Mineral Wastes on Alkali-silica Reaction in Recycled Aggregated Mortar”, Periodica Polytechnica Civil Engineering, 2021. https://doi.org/10.3311/PPci.17355
  • Külekçi, G. Investigation of the utility of the waste brick and marble powders on the paste backfill , master's thesis, Karadeniz Technical University, 2013
  • Külekçi, G., Erçikdi, B., Aliyazicioğlu, Ş. Effect of waste brick as mineral admixture on the mechanical performance of cemented paste backfill, IOP Conference Series: Earth and Environmental Science, 2018, 44 (4), 042039.
  • Lee, J.W.; Kweon D.C. Evaluation of radiation dose reduction by barium composite shielding in an angiography system, Radiation Effects and Defects in Solids, 2020.
  • Mann HS, Brar GS, Mann KS, Mudahar GS (2016) Experimental Investigation of Clay Fly Ash Bricks for Gamma-Ray Shielding. Nuclear Engineering and Technology 48(5), 1230-1236
  • Mehta PK, Monteiro PJM (2006) Concrete: Microstructure, Properties and Materials. McGraw-Hill, New York, NY, USA, 3rd edition
  • Mheemeed AK, Hasan HI, Al-Jomaily FM (2012) Gamma-ray absorption using rubber—lead mixtures as radiation protection shields. J Radioanal Nucl Chem 291, 653–659 https://doi.org/10.1007/s10967-011-1556-2
  • Nadeem, M.; Pofale, A. Experimental investigation of using slag as an alternative to normal aggregates (coarse and fine) in concrete, Int. J. Civ. Struct. Environ. Infrastruct. Eng. Res. Dev. 2012, 3, 117–127.
  • Nikbin, I.M.; Mohebbi, R.; Dezhampanah, S.; Mehdipour, S.; Mohammadi, R.; Nejat T. Gamma ray shielding properties of heavy-weight concrete containing Nano-TiO2 Radiat. Phys. Chem. 2019, 162, 157-167.
  • Omran, O.L.; Sadrmomtazi, A.; Nikbin, I.M. A comprehensive study on the effect of water to cement ratio on the mechanical and radiation shielding properties of heavyweight concrete Construction and Building Materials 2019, 229, 116905.
  • Ouda, A.S. Development of high-performance heavy density concrete using different aggregates for gamma-ray shielding, Prog. Nucl. Energy 2015, 79, 48–55.
  • Rondi, L.; Bregoli, G.; Sorlini, S.; Cominoli, L.; Collivignarelli, C.; Plizzari, G. Concrete with EAF steel slag as aggregate: a comprehensive technical and environmental characterisation, Compos. Part B Eng. 2016, 90, 195–202.
  • Sanjuán MÁ, Suarez-Navarro JA, Argiz C. et al. (2021) Radiation dose calculation of fine and coarse coal fly ash used for building purposes J Radioanal Nucl Chem 327, 1045–1054. https://doi.org/10.1007/s10967-020-07578-8
  • Sarkar, R.; Singh, N.; Das, S.K. Utilization of steel melting electric arc furnace slag for development of vitreous ceramic tiles, Bull. Mater. Sci. 2010, 33, 293–298.
  • Sayyed, M.I.; El-Mallawany, R.; Shielding properties of (100-x) TeO2-(x)MoO3 glasses. Mater. Chem. Phys. 2017, 201, 50–56.
  • Singh K, Singh S, Singh G (2014) Effect of Fly ash Addition on Mechanical and Gamma Radiation Shielding Properties of Concrete. Journal of Energy 7
  • Singh, K.; Singh, C.; Sidhu, G.S.; Singh, J.; Singh, P.S.; Mudahar, G.S. Fly ash: a radiation shielding material, Indian Journal of Physics, 2003, 77A, 41–45.
  • Singh, V.P.; Medhat, M.E.; Badiger, N.M.; Rahman A.Z.M.S. Radiation shielding effectiveness of newly developed super conductors Radiat. Phys. Chem. 2015, 106, 175-183.
  • Tekin, H.O.; Kavaz, E.; Sayyed, M.I.; Agar, O.; Kamislioglu, M.; Altunsoy Guclu E.E. and Eke C. An extensive study on nuclear shielding performance and mass stopping power (MSP)/projected ranges (PR) of some selected granite samples, Radiation Effects and Defects in Solids, 2020.
  • TS EN 206:2013+A1, Concrete - Specification, performance, production and conformity, Turkish Standard, Turkey 2017. TS EN 2823, Standard Members of Pumice, Definitions and Requirements, Ankara, 2011.
  • Wongso, P.M.; Dewang, S.; Jumpeno, B.Y.E.B.; Firmansyah, O.A.; Mellawati, J. Experimental Study of Concrete Composites of Fly Ash and Ferronickel Slag for Gamma-Ray Shielding, A Scientific Journal for The Applications of Isotopes and Radiation 2020, 16, 1.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Gökhan Külekçi 0000-0002-2971-4045

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Külekçi, G. (2021). 60Co Radyoaktif Nokta Kaynaği ile Uçucu Külün Gama Radyasyon Koruma Özellikleri. Avrupa Bilim Ve Teknoloji Dergisi(27), 145-151. https://doi.org/10.31590/ejosat.949686