Araştırma Makalesi
BibTex RIS Kaynak Göster

Drying Characteristics and Mathematical Modeling of Without Pretreatment and Pretreatment Zucchini (Cucurbita Pepo L.) Slices in a Solar Tunnel Dryer

Yıl 2021, , 575 - 582, 30.11.2021
https://doi.org/10.31590/ejosat.984997

Öz

With/without pretreated zucchini samples were dried in a solar tunnel dryer to determine drying characteristic and modelling. Solar irradiation at ambient, drying air temperature and air velocity at specific intervals in various parts of the dryer were measured. In the study, it was investigated how pretreatment of zucchini affected the drying time, moisture ratio and drying rate of it in solar tunnel dryer. In addition, the data on the drying process were applied to eight different mathematical models (Newton, Page, Henderson and pabis, Logarithmic, Diffusion, Midilli et al., Alibas, Logistic Equation Models). The performance levels of the models compared according to R2, χ2, besides RMSE between moisture ratios that were observed and predicted. Furthermore, considering all selected models, Midilli et al. and Alibaş model equations gave the highest R2, the lowest χ2 and RMSE values and were found to reveal the ratio of drying in a satisfactory way for all the methods of drying.

Kaynakça

  • References Akpınar E., Biçer Y. (2003). Investigation of Drying Behaviour of Pumpkin in a Cyclone Type Dryer, Gazi University Journal of Science, 16(1), pp: 159-169.
  • Alibaş, İ. (2012). Microwave Drying of Grapevine (Vitis vinifera L.) Leaves and Determination of Some Quality Parameters. Journal of Agricultural Sciences,18 (1), 43-53. Thompson Seedless Grapes. Journal Food Engineering, Vol. 39; pp. 211-216.
  • Alıç, E., Daş, M. (2020). Experimental Design and Numerical Analysis of a Trapezoidal Absorber Plate Air Solar Collector. European Journal of Science and Technology. Special Issue, pp. 78-88, November 2020.
  • Banout J., Ehl P., Havlik J., Lojka B., Polesny Z., Verner V. (2011). Design and performance evaluation of a Double-pass solar drier for drying of red chili (Capsicum annum L.). Sol. Energy, 85, pp.506-515. Chandra, P.K., & Singh, R. P. (1995). Applied numerical methods for food and agricultural engineers. Boca Raton, FL: CRC Press, pp. 163– 167.
  • Çetin, N. (2019). Effect of Drying Conditions on Color Properties of Apples and Oranges. European Journal of Science and Technology No. 17, pp. 463-470.
  • Devres, Y.O., Pala M. (1993). Importance and application areas of mathematical modelling in food industry. Food. 18 (3) pp: 173-181.
  • Doymaz, I. (2014). Convective air drying characteristics of thin layer carrots, Journal of Food Engineering, Volume 61, Issue 3, Pages 359-364.
  • Henderson S.M. (1974) Progress in developing the thin layer drying equation. Transactions of the ASAE 17: 1167–1172.
  • Karathanos V.T. (1999). Determination of water content of dried fruits by drying kinetics. J Food Eng 39: 337–344.
  • Karthikeyan A.K., Murugavelh S. (2018). Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renewable Energy. Vol: 128, Part A, Pp: 305-312.
  • Kutlu N. (2013). Determination And Modeling of Tomato, Zucchini and Eggplant’s Drying Characteristics. Master Thesis. Ankara University Graduate School of Natural and Applied Science Department of Food Engineering. Pp:135.
  • Kutlu N., Isci A. (2017). Drying Characteristics of Zucchini and Empirical Modeling of Its Drying Process. International Journal of Food Studies IJFS. Volume 6 pages 232–244.
  • Loague, K. and Green, R.E. 1991. Statistical and Graphical Methods for Evaluating Solute Transport Models. Overview and Application. J. Contam, Hydrol., Vol:7; pp. 51-73.
  • Midilli A, Kucuk H & Yapar Z (2002). A new model for single layer drying. Drying Technology 20(7):1503-1513.
  • Mulato, S., Atmawinata, O., Yusianto, Handaka, Pass, T., Muehlbauer, W., Esper, A. (1999). Development of a Solar Cocoa Processing Center for Cooperative Use in Indonesia, The Planter, 75(875), pp. 57-74.
  • Pangavhane, D.R., Sawhney, R.L. and Sarsavadia, P.N. (1999) Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. Journal of Food Engineering, 39, 211-216.
  • Rabha, D.K. Muthukumar, P, Somayaji C. (2017). Experimental investigation of thin layer drying kinetics of ghost chili pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renew. Energy, 105 (2017), pp. 583-589.
  • Rabha, D.K., Muthukumar P. (2017). Performance studies on a forced convection solar dryer integrated with a paraffin wax based latent heat storage system. Sol. Energy, 149 (2017), pp. 214-226.
  • Robe, K. 1990. CIM-The big Picture, 1980’s: Computer Integrated Manufacturing, 1990’s: Computer Integrated Management. Food Processing, Putman Publication, pp. 37-48.
  • Tunckal C., İ. Doymaz (2020) Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy. 150, 918-923.
  • Yaldiz O., Ertekin C., & Uzun, H. I. (2001). Mathematical modelling of thin layer solar drying of Sultana grapes. Energy, 26(5), 457- 465.
  • Zhang Q, Litchfleld J.B. (1991) An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Dry Technol 9: 383–395.
  • FAOSTAT, (2020). http://www.fao.org/faostat/
  • Henderson, S.M., Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Research Engineering, 6, 169-174.

Ön İşlemsiz ve Ön işlemli Kabak (Cucurbita Pepo L.) Dilimlerinin Tünel Tipi Güneşli Kurutucuda Kurutma Özellikleri ve Matematiksel Modellemesi

Yıl 2021, , 575 - 582, 30.11.2021
https://doi.org/10.31590/ejosat.984997

Öz

Ön işlemsiz ve ön işlemli kabak örnekleri, kurutma karakteristiği ve modellemeyi belirlemek için tünel tipi güneş enerjili kurutma yöntemi kullanılarak kurutulmuştur. Araştırmacılar, kurutucunun çeşitli bölümlerinde belirli aralıklarla ortam ve kurutma havası sıcaklıklarında ve hava hızında güneş ışınımını ölçmüştür. Çalışmada, güneş enerjisiyle kurutmanın ön işlemsiz ve ön işlemli kabak örneklerinin kuruma süresini, nem oranını ve kuruma hızını nasıl etkilediği araştırılmıştır. Ayrıca kurutma işlemine ilişkin veriler, Newton, Page, Henderson ve pabis, Logaritmik, Difüzyon, Midilli ve ark. Alibas, Lojistik isimli 8 farklı matematiksel modele uygulanmıştır. Araştırmacılar, modellerin performans düzeylerini korelasyon katsayısı (R2), ki-kare değeri (χ2) ve gözlemlenen ve tahmin edilen nem oranları arasındaki ortalama hata karesi (RMSE) ile karşılaştırmışlardır. Ayrıca, seçilen tüm modeller dikkate alındığında Midilli ve ark. ve Alibaş model denklemleri en yüksek R2, en düşük χ2 ve RMSE değerlerini vermiş ve tüm kurutma yöntemleri için kuruma oranını tatmin edici bir şekilde ortaya koyduğu bulunmuştur.

Kaynakça

  • References Akpınar E., Biçer Y. (2003). Investigation of Drying Behaviour of Pumpkin in a Cyclone Type Dryer, Gazi University Journal of Science, 16(1), pp: 159-169.
  • Alibaş, İ. (2012). Microwave Drying of Grapevine (Vitis vinifera L.) Leaves and Determination of Some Quality Parameters. Journal of Agricultural Sciences,18 (1), 43-53. Thompson Seedless Grapes. Journal Food Engineering, Vol. 39; pp. 211-216.
  • Alıç, E., Daş, M. (2020). Experimental Design and Numerical Analysis of a Trapezoidal Absorber Plate Air Solar Collector. European Journal of Science and Technology. Special Issue, pp. 78-88, November 2020.
  • Banout J., Ehl P., Havlik J., Lojka B., Polesny Z., Verner V. (2011). Design and performance evaluation of a Double-pass solar drier for drying of red chili (Capsicum annum L.). Sol. Energy, 85, pp.506-515. Chandra, P.K., & Singh, R. P. (1995). Applied numerical methods for food and agricultural engineers. Boca Raton, FL: CRC Press, pp. 163– 167.
  • Çetin, N. (2019). Effect of Drying Conditions on Color Properties of Apples and Oranges. European Journal of Science and Technology No. 17, pp. 463-470.
  • Devres, Y.O., Pala M. (1993). Importance and application areas of mathematical modelling in food industry. Food. 18 (3) pp: 173-181.
  • Doymaz, I. (2014). Convective air drying characteristics of thin layer carrots, Journal of Food Engineering, Volume 61, Issue 3, Pages 359-364.
  • Henderson S.M. (1974) Progress in developing the thin layer drying equation. Transactions of the ASAE 17: 1167–1172.
  • Karathanos V.T. (1999). Determination of water content of dried fruits by drying kinetics. J Food Eng 39: 337–344.
  • Karthikeyan A.K., Murugavelh S. (2018). Thin layer drying kinetics and exergy analysis of turmeric (Curcuma longa) in a mixed mode forced convection solar tunnel dryer. Renewable Energy. Vol: 128, Part A, Pp: 305-312.
  • Kutlu N. (2013). Determination And Modeling of Tomato, Zucchini and Eggplant’s Drying Characteristics. Master Thesis. Ankara University Graduate School of Natural and Applied Science Department of Food Engineering. Pp:135.
  • Kutlu N., Isci A. (2017). Drying Characteristics of Zucchini and Empirical Modeling of Its Drying Process. International Journal of Food Studies IJFS. Volume 6 pages 232–244.
  • Loague, K. and Green, R.E. 1991. Statistical and Graphical Methods for Evaluating Solute Transport Models. Overview and Application. J. Contam, Hydrol., Vol:7; pp. 51-73.
  • Midilli A, Kucuk H & Yapar Z (2002). A new model for single layer drying. Drying Technology 20(7):1503-1513.
  • Mulato, S., Atmawinata, O., Yusianto, Handaka, Pass, T., Muehlbauer, W., Esper, A. (1999). Development of a Solar Cocoa Processing Center for Cooperative Use in Indonesia, The Planter, 75(875), pp. 57-74.
  • Pangavhane, D.R., Sawhney, R.L. and Sarsavadia, P.N. (1999) Effect of various dipping pretreatment on drying kinetics of Thompson seedless grapes. Journal of Food Engineering, 39, 211-216.
  • Rabha, D.K. Muthukumar, P, Somayaji C. (2017). Experimental investigation of thin layer drying kinetics of ghost chili pepper (Capsicum Chinense Jacq.) dried in a forced convection solar tunnel dryer. Renew. Energy, 105 (2017), pp. 583-589.
  • Rabha, D.K., Muthukumar P. (2017). Performance studies on a forced convection solar dryer integrated with a paraffin wax based latent heat storage system. Sol. Energy, 149 (2017), pp. 214-226.
  • Robe, K. 1990. CIM-The big Picture, 1980’s: Computer Integrated Manufacturing, 1990’s: Computer Integrated Management. Food Processing, Putman Publication, pp. 37-48.
  • Tunckal C., İ. Doymaz (2020) Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renewable Energy. 150, 918-923.
  • Yaldiz O., Ertekin C., & Uzun, H. I. (2001). Mathematical modelling of thin layer solar drying of Sultana grapes. Energy, 26(5), 457- 465.
  • Zhang Q, Litchfleld J.B. (1991) An optimization of intermittent corn drying in a laboratory scale thin layer dryer. Dry Technol 9: 383–395.
  • FAOSTAT, (2020). http://www.fao.org/faostat/
  • Henderson, S.M., Pabis, S. (1961). Grain drying theory I: Temperature effect on drying coefficient. Journal of Agricultural Research Engineering, 6, 169-174.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Sevil Karaaslan 0000-0002-2289-8005

Kamil Ekinci 0000-0002-7083-5199

Barbaros Kumbul 0000-0002-7379-7597

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Karaaslan, S., Ekinci, K., & Kumbul, B. (2021). Drying Characteristics and Mathematical Modeling of Without Pretreatment and Pretreatment Zucchini (Cucurbita Pepo L.) Slices in a Solar Tunnel Dryer. Avrupa Bilim Ve Teknoloji Dergisi(27), 575-582. https://doi.org/10.31590/ejosat.984997