Araştırma Makalesi
BibTex RIS Kaynak Göster

Radyoterapide kullanılan baş yastığının dozimetrik etkisinin farklı algoritmalarla incelenmesi

Yıl 2021, , 837 - 841, 30.11.2021
https://doi.org/10.31590/ejosat.994291

Öz

GİRİŞ ve AMAÇ: Radyoterapide immobilizasyon cihazlarının kullanılması hastanın doğru pozisyon alması ve tedavinin doğru uygulanması için zorunludur. Tedavi sırasında hastanın hareketini kısıtlamak ve rahat bir şekilde yatışını sağlamak için baş yastıkları sıklıkla kullanılmaktadır. Bu çalışmanın amacı, iki farklı algoritma kullanarak baş yastığını vücut konturuna dahil ederek baş yastığının doz dağılımı üzerindeki etkisini incelemektir.
YÖNTEM ve GEREÇLER: Elde edilen sonuçlar gama analizi yöntemi ile karşılaştırıldı. Yedi hasta görüntüsündeki vücut konturları, baş yastıklı ve baş yastıksız olarak şekillendirildi. Baş yastığının vücut konturuna dahil edilip çıkarıldığı durumlarda hem Collapse Cone (CC) hem de Monte Carlo (MC) algoritmaları kullanılarak her hasta için vücut içindeki doz dağılımı hesaplandı.
BULGULAR: Sonuçlardan da anlaşılacağı gibi, koltuk başlığı doz dağılımı üzerinde bir miktar etkiye sahiptir. Spesifik olarak, gama analizinin sonuçları, baş yastığı vücut konturuna dahil edildiğinde hastaya ulaşan dozların bir miktar azaldığını göstermektedir. CC algoritması, düşük yoğunluklu bir ortamda ikincil fotonların ve saçılan radyasyonun yeterince doğru hesaplanmasına izin vermediğinden, CC algoritmasının benzerlik sonuçları gama analizinde MC algoritmasına göre daha yüksektir
TARTIŞMA ve SONUÇ: Hastaya ulaşan radyasyon dozunun doğru bir şekilde hesaplanabilmesi için tedavi sırasında radyasyonun geçtiği tüm materyaller bir tedavi planlama sisteminde belirtilmelidir. Radyoterapide kullanılan immobilizasyon cihazlarının düşük yoğunluklu materyalden oluşsa bile hasta içindeki doz dağılımı üzerinde bir miktar etkilerinin olduğu ve tedavi planlama sistemine dahil edilmesi gerektiği sonucuna varılmıştır.

Kaynakça

  • Pang EPP, Knight K, Baird M, Loh JMQ, Boo AHS, Tuan JKL. A comparison of interfraction setup error, patient comfort, and therapist acceptance for 2 different prostate radiation therapy immobilization devices. Advances in Radiation Oncology 2017; 2:125-131.
  • Melancon AD, Kudchadker RJ, Amos RA, Johnson JL, Zhang Y, Yu ZH, Zhang L, Dong L, Lee AK. Patient-specific and generic immobilization devices for prostate radiotherapy. Int J Med Phys Clin Eng Radiat Oncol 2013; 2:125-132.
  • Outhwaite JA, McDowall WR, Marquart L, Rattray G, Fielding A, Hargrave C. Training programme impact on thermoplastic immobilization for head and neck radiation therapy. Radiography 2013; 19:28-34.
  • Oulhouq Y, Zerfaoui M, Bakari D, Rrhioua A, Machichi M, Berhili S. The comparison of two calculation algorithms to evaluate the dosimetric effects of thermoplastic masks used in radiotherapy. Materials Today: Proceedings 2019; 13:1102-1107.
  • Kang H, Lovelock DM, Yorke ED, Kriminiski S, Lee N, Amols HI. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance. J Appl Clin Med Phys 2011; 12:86–96.
  • Chen L, Peng YL, Gu SY, Shen H, Zhang DD, Sun WZ, Wu JH, Deng XW. Dosimetric Effects of Head and Neck Immobilization Devices on Multi-field Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma. J Cancer 2018; 9(14):2443-2450.
  • Vanetti E, Nicolini G, Clivio A, Fogliata A, Cozzi L. The impact of treatment couch modelling on RapidArc. Phys Med Biol 2009; 54(9):157–166.
  • Pulliam KB, Howell RM, Followill D, Luo D, White RA, Kry SF. The clinical impact of the couch top and rails on IMRT and arc therapy. Phys Med Biol 2011; 56(23):7435–7447.
  • Tuğrul T. Absorption ratio of treatment couch and effect on surface and build-up region doses. Reports Of Practical Oncology And Radiotherapy 2018; 23:1–5.
  • Gerig LH, Niedbala M, Nyiri BJ. Dose perturbations by two carbon fiber treatment couches and the ability of a commercial treatment planning system to predict these effects. Med Phys 2010; 37(1):322–328.
  • Olch AJ, Lavey RS. Reproducibility and treatment planning advantages of a carbon fiber relocatable head fixation system. Radiother Oncol 2002; 65:165–168.
  • Pan XB, Huang ST, Chen KH, Jiang YM, Ma JL, Qu S, Li L, Chen L, Zhu XD. Intensity-modulated radiotherapy provides better quality of life than two-dimensional conventional radiotherapy for patients with stage II nasopharyngeal carcinoma. Oncotarget 2017; 8(28):46211–46218.
  • Wu S, Xie C, Jin X, Zhang P. Simultaneous modulated accelerated radiation therapy in the treatment of nasopharyngeal cancer: A local center's experience. Int J Radiat Oncol Biol Phys 2006; 66(4):40–46.
  • Olch AJ, Gerig L, Li H, Mihaylov I, Morgan A. Dosimetric effects caused by couch tops and immobilization devices: report of AAPM Task Group 176. Med Phys 2014; 41(6):061501.
  • Civco Radiotherapy (2020). Solutions Guide Volume 6.1. Orange City, USA.
  • Ulmer W, Pyyry J, Kaissl W. A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations. Phys. Med. Biol 2005; 50:1767–1790.
  • Reis CQM, Nicolucci P, Fortes SS, Silva LP. Effects of heterogeneities in dose distributions under nonreference conditions: Monte Carlo simulation vs dose calculation algorithms. Medical Dosimetry 2019; 44:74–82.
  • Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knöös T, nicolini G, Cozzi L. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys. Med. Biol 2007; 52:1363–1385.
  • Bragg CM, Conway J. Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning. Radiother Oncol 2006; 81:315–323.
  • Chow JC, Leung MK, Van Dyk J. Variations of lung density and geometry on inhomogeneity correction algorithms: A Monte Carlo dosimetric evaluation. Med. Phys 2009; 36:3619-3630.
  • Monaco 5 Comprehensive treatment planning (2014) LPCMON090520 v5.0. Elekta AB.

Examination of the dosimetric effects of the headrest used in radiotherapy by different algorithms

Yıl 2021, , 837 - 841, 30.11.2021
https://doi.org/10.31590/ejosat.994291

Öz

INTRODUCTION: The use of immobilization devices is imperative in radiotherapy to ensure proper positioning of the patient and correct application of the treatment. Headrests are frequently used to restrict the movement of a patient and to provide comfortable laying during the treatment. The aim of the present study was to examine the effect of a headrest on dose distribution by including the headrest in the body structure using two different algorithms.
METHODS: The body structures on seven patient images were contoured with and without headrest. Dose distribution within the body was calculated for each patient using both Collapse Cone (CC) and Monte Carlo (MC) algorithms for cases where the headrest was included in the body structure and removed.
RESULTS: the headrest has some effect on the dose distribution. Specifically, the results of the gamma analysis indicate that when the headrest was included in the body structure doses to the body were somewhat reduced. Since the CC algorithm does not allow calculation of secondary photons and scattered radiation sufficiently accurate in a low density environment, the similarity results of the CC algorithm were higher in the gamma analysis than those of the MC algorithm.
DISCUSSION AND CONCLUSION: In order to accurately calculate the radiation dose, all the materials through which the radiation passes during the treatment must be specified in a treatment planning system. It is concluded that even if the immobilization devices are of low-density material, they have some effect on the dose distribution within a patient and should be included in the treatment planning system.

Kaynakça

  • Pang EPP, Knight K, Baird M, Loh JMQ, Boo AHS, Tuan JKL. A comparison of interfraction setup error, patient comfort, and therapist acceptance for 2 different prostate radiation therapy immobilization devices. Advances in Radiation Oncology 2017; 2:125-131.
  • Melancon AD, Kudchadker RJ, Amos RA, Johnson JL, Zhang Y, Yu ZH, Zhang L, Dong L, Lee AK. Patient-specific and generic immobilization devices for prostate radiotherapy. Int J Med Phys Clin Eng Radiat Oncol 2013; 2:125-132.
  • Outhwaite JA, McDowall WR, Marquart L, Rattray G, Fielding A, Hargrave C. Training programme impact on thermoplastic immobilization for head and neck radiation therapy. Radiography 2013; 19:28-34.
  • Oulhouq Y, Zerfaoui M, Bakari D, Rrhioua A, Machichi M, Berhili S. The comparison of two calculation algorithms to evaluate the dosimetric effects of thermoplastic masks used in radiotherapy. Materials Today: Proceedings 2019; 13:1102-1107.
  • Kang H, Lovelock DM, Yorke ED, Kriminiski S, Lee N, Amols HI. Accurate positioning for head and neck cancer patients using 2D and 3D image guidance. J Appl Clin Med Phys 2011; 12:86–96.
  • Chen L, Peng YL, Gu SY, Shen H, Zhang DD, Sun WZ, Wu JH, Deng XW. Dosimetric Effects of Head and Neck Immobilization Devices on Multi-field Intensity Modulated Radiation Therapy for Nasopharyngeal Carcinoma. J Cancer 2018; 9(14):2443-2450.
  • Vanetti E, Nicolini G, Clivio A, Fogliata A, Cozzi L. The impact of treatment couch modelling on RapidArc. Phys Med Biol 2009; 54(9):157–166.
  • Pulliam KB, Howell RM, Followill D, Luo D, White RA, Kry SF. The clinical impact of the couch top and rails on IMRT and arc therapy. Phys Med Biol 2011; 56(23):7435–7447.
  • Tuğrul T. Absorption ratio of treatment couch and effect on surface and build-up region doses. Reports Of Practical Oncology And Radiotherapy 2018; 23:1–5.
  • Gerig LH, Niedbala M, Nyiri BJ. Dose perturbations by two carbon fiber treatment couches and the ability of a commercial treatment planning system to predict these effects. Med Phys 2010; 37(1):322–328.
  • Olch AJ, Lavey RS. Reproducibility and treatment planning advantages of a carbon fiber relocatable head fixation system. Radiother Oncol 2002; 65:165–168.
  • Pan XB, Huang ST, Chen KH, Jiang YM, Ma JL, Qu S, Li L, Chen L, Zhu XD. Intensity-modulated radiotherapy provides better quality of life than two-dimensional conventional radiotherapy for patients with stage II nasopharyngeal carcinoma. Oncotarget 2017; 8(28):46211–46218.
  • Wu S, Xie C, Jin X, Zhang P. Simultaneous modulated accelerated radiation therapy in the treatment of nasopharyngeal cancer: A local center's experience. Int J Radiat Oncol Biol Phys 2006; 66(4):40–46.
  • Olch AJ, Gerig L, Li H, Mihaylov I, Morgan A. Dosimetric effects caused by couch tops and immobilization devices: report of AAPM Task Group 176. Med Phys 2014; 41(6):061501.
  • Civco Radiotherapy (2020). Solutions Guide Volume 6.1. Orange City, USA.
  • Ulmer W, Pyyry J, Kaissl W. A 3D photon superposition/convolution algorithm and its foundation on results of Monte Carlo calculations. Phys. Med. Biol 2005; 50:1767–1790.
  • Reis CQM, Nicolucci P, Fortes SS, Silva LP. Effects of heterogeneities in dose distributions under nonreference conditions: Monte Carlo simulation vs dose calculation algorithms. Medical Dosimetry 2019; 44:74–82.
  • Fogliata A, Vanetti E, Albers D, Brink C, Clivio A, Knöös T, nicolini G, Cozzi L. On the dosimetric behaviour of photon dose calculation algorithms in the presence of simple geometric heterogeneities: comparison with Monte Carlo calculations. Phys. Med. Biol 2007; 52:1363–1385.
  • Bragg CM, Conway J. Dosimetric verification of the anisotropic analytical algorithm for radiotherapy treatment planning. Radiother Oncol 2006; 81:315–323.
  • Chow JC, Leung MK, Van Dyk J. Variations of lung density and geometry on inhomogeneity correction algorithms: A Monte Carlo dosimetric evaluation. Med. Phys 2009; 36:3619-3630.
  • Monaco 5 Comprehensive treatment planning (2014) LPCMON090520 v5.0. Elekta AB.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Taylan Tuğrul 0000-0002-0557-1334

Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021

Kaynak Göster

APA Tuğrul, T. (2021). Examination of the dosimetric effects of the headrest used in radiotherapy by different algorithms. Avrupa Bilim Ve Teknoloji Dergisi(27), 837-841. https://doi.org/10.31590/ejosat.994291