Derleme
BibTex RIS Kaynak Göster

Silk Sericin and Potential Application Areas

Yıl 2019, Sayı: 15, 450 - 459, 31.03.2019
https://doi.org/10.31590/ejosat.517226

Öz

Silk consists of two main proteins called fibroin (fibrous protein) and sericin (globular, glued protein). While fibroin is used in textile production and various biomaterial applications, sericin is considered as a waste material in the textile industry. Sericin is a multicomponent protein with an indefinite structure and has received less attention than fibroin, but it has been shown to be biocompatible and has biological activity. Sericin has interesting bioactive properties for biomedical applications with variable amino acid composition and various functional groups. Because of its antioxidant character, its moisturizing ability and its mitogenic effect on mammalian cells, in recent years, it has been shown that sericin is useful in cell culture and tissue engineering. In addition, the positive effects on keratinocytes and fibroblasts have led to the development of sericin-based biomaterials for the repair of skin tissue, especially for wound care materials. In addition, sericin has the potential to be used for bone tissue engineering because of its ability to induce bone-like hydroxyapatite nucleation. Stable silk sericin biomaterials such as films, sponges and hydrogels are prepared by cross-linking or mixing with other polymers. Sericin also has the potential to be used for drug release because its chemical reactivity and pH response facilitate the production of sericin-based nano-microparticles, hydrogels and conjugated molecules, and increase the bioactivity of drugs. In this study, the properties and usage areas of silk sericin, which is an important protein, are summarized.

Kaynakça

  • Ak, F. 2013. İpek Fibroin Kriyojellerinin Sentezi ve Mekanik Özelliklerinin İncelenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 93s, İstanbul.
  • Akturk, O., Tezcaner, A., Bilgili, H., Deveci, M.S., Gecit, M.R., Keskin, D. 2011. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. Journal of Bioscience and Bioengineering 112(3), 279-288.
  • Altman, G.H., Diaz, F., Jakuba C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., Kaplan, D.L. 2003. Silk-based biomaterials. Biomaterials 24(3), 401-416.
  • Ampawong, S., Aramwit. P. 2017. In vivo safety and efficacy of sericin/poly(vinyl alcohol)/glycerin scaffolds fabricated by freeze-drying and salt-leaching techniques for wound dressing applications. Journal of Bioactive and Compatible Polymers, 1-14. https://doi.org/10.1177/0883911517694398
  • Ang-atikarnkul, P., Watthanaphanit, A., Rujiravanit R. 2014. Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties.. Composites Science and Technology 96, 88-96.
  • Aramwit, P., Kanokpanont, S., De-Eknamkul, W., Srichana, T. 2009. Monitoring of inflammatory mediators induced by silk sericin. Journal of Bioscience and Bioengineering 107, 556-561.
  • Aramwit, P., Palapinyo, S., Srichana, T., Chottanapund, S., Muangman, P. 2013. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Archives of Dermatological Research 305, 585-594.
  • Aramwit, P., Siritientong, T., Srichana, T. 2011. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Management & Research 30(3), 217-224. DOI: 10.1177/0734242X11404733
  • Chen, F., Porter, D., Vollrath, F. 2012. Structure and physical properties of silkworm cocoons. Journal of the Royal Society Interface 9, 2299-2308.
  • Çalamak, S. 2012. Yara Örtüsü Olarak İpek Bazlı Antibakteriyel Biyonanotekstillerin Üretimi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 104s, Ankara.
  • Dash, B.C., Mandal, B.B., Kundu, S.C. 2009. Silk gland sericin proteinmembranes: fabrication and characterization for potential biotechnological applications. Journal of Biotechnology 144(4), 321-329.
  • Dash, R., Acharya, C., Bindu, P.C., Kundu, S.C. 2007. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Reports 41, 236-41.
  • Ersel, M., Uyanikgil,Y., Karbek Akarca, F., Ozcete, E., Altunci, Y.A., Karabey, F., Cavusoglu, T., Meral, A., Yigitturk, G., Cetin, E.O. 2016. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model. Medical Science Monitor, 22, 1064-1078. DOI: 10.12659/MSM.897981
  • Eslah, S., Tavanai, H., Morshed, M. 2016. Electrospinning and characterization of poly (vinyl alcohol)-sericin nanofibers as a potential for tissue engineering applications,. The Journal of The Textile Institute 107, 949-957. http://dx.doi.org/10.1080/00405000.2015.1072328
  • Fan, J.B., Wu, L.P., Chen, L.S., Mao, X.Y., Ren, F.Z. 2009. Antioxidant activities of silk sericin from silkworm Bombyx mori. Journal of Food Biochemistry 33, 74-88.
  • Freddi, G., Mossotti, R., Innocenti, R. 2003. Degumming of silk fabric with several proteases. Journal of Biotechnology 106, 101-112.
  • Garel, A., Deleage, G., Prudhomme, J.C. 1997. Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced fromthe sequence of the Ser 1B Cdna. Insect Biochemistry and Molecular Biology 27(5), 469-477.
  • Gilotra, S., Chouhan, D., Bhardwaj, N., Nandi, S.K., Mandal, B.B. 2018. Potential of silk sericin based nanofibrous mats for wound dressing applications. Materials Science & Engineering C 90, 420-432. https://doi.org/10.1016/j.msec.2018.04.077
  • Gimenes, M.L., Silva, V.R., Vieira, M.G.A, Da Silva, M.G.C., Scheer, A.P. 2014. High molecular sericin from Bombyx mori cocoons: extraction and recovering by ultrafiltration. International Journal of Chemical Engineering and Applications 5(3), 266-271.
  • Hardy, J.G., Römer, L.M., Scheibel, T.R. 2008. Polymeric materials based on silk proteins. Polymer 49, 4309-4327.
  • He, H., Cai, R., Wang, Y., Tao, G., Guo, P., Zuo, H., Chen, L., Liu, X., Zhao, P., Xia. Q. 2017. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International Journal of Biological Macromolecules 104, 457-464.
  • He, M., Hu, H., Wang, P., Fu, H., Yuan, J., Wang, Q., Fan, X. 2018. Preparation of a bio-composite of sericin-g-PMMA via HRP-mediated graft copolymerization. International Journal of Biological Macromolecules 117, 323-330.
  • Islam, S., Shahid, M., and Mohammad, F. 2013. Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers A Review. Industrial & Engineering Chemistry Research 52, 5245-5260. dx.doi.org/10.1021/ie303627x
  • Karahaliloglu, Z., Kilicay, E., Denkbas, E.B. 2017. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material. Artificial Cells, Nanomedicine, and Biotechnology 45, 1172-1185.
  • Kimura, K., Oyama, F., Ueda, H., Mizuno, S., Shimura, K. 1985. Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia 41(9), 1167-1171.
  • Kumar, P., Kumar, D., Sikka, P., Singh, P. 2015. Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation. Animal Reproduction Science 152, 26-31.
  • Kunz, R.I., Brancalhão, R.M.S., Ribeiro, L.F.C., Natali, M.R.M. 2016. Silkworm Sericin: Properties and Biomedical Applications. BioMed Research International 2016, Article ID 8175701, 19 pages http://dx.doi.org/10.1155/2016/8175701
  • Kwak, H.W., Lee, K.H. 2018. Polyethylenimine-functionalized silk sericin beads for highperformance remediation of hexavalent chromium from aqueous solution. Chemosphere 207, 507-516. https://doi.org/10.1016/j.chemosphere.2018.04.158
  • Kweon, H.Y., Yeo, J.H., Lee, K.G., Lee, Y.W., Park, Y.H., Nahm, J.H., Cho, C.S. 2000. Effects of poloxamer on the gelation of silk sericin. Macromolecular Rapid Communications 21, 1302-1305.
  • Lamboni, L., Li, Y., Liu, J., Yang, G. 2016. Silk Sericin-Functionalized Bacterial Cellulose as a Potential Wound-Healing Biomaterial. Biomacromolecules 17, 3076-3084. DOI: 10.1021/acs.biomac.6b00995
  • Michaille, J.J., Garel, A., Prudhomme, J.C. 1990. Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene 86(2), 177-84.
  • Mondal, M., Trivedy, K. Kumar, S.N. 2007. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.-a review. Caspian Journal of Environmental Sciences 5(2), 63-76.
  • Nayak, S., Kundu, S.C. 2014. Sericin–carboxymethyl cellulose porous matrices as cellular wound dressing material. Journal of Biomedical Material Research Part A 2014:102A, 1928-1940.
  • Nishida, A., Yamada, M., Kanazawa, T., Takashima, Y., Ouchi,K., Okada, H. 2011. Sustained-release of protein from biodegradable sericin film, gel and sponge,” International Journal of Pharmaceutics 407, 44-52.
  • Padamwar, M.N., Pawar, A.P. 2004. Silk sericin and its applications: A review. Journal of Scientific and Industrial Research 63, 323-329.
  • Padamwar, M.N., Pawar, A.P., Daithankar, A.V., Mahadik, K.R. 2005. Silk sericin as a moisturizer: an in vivo study. Journal of Cosmetic Dermatology 4, 250-257.
  • Panilaitis, B., Altman, G.H., Chen, J., Jin, H.J., Karageorgiou, V., Kaplan, D.L. 2003. Macrophage responses to silk. Biomaterials 24(18), 3079-3085.
  • Pankaew, P., Klumdoung, P., Naemchanthara, K. 2015. A Study of the Preparation of Silk Sericin/Chitosan Composite Film for Future Wound Dressing Applications. Applied Mechanics and Materials 804, 179-182.
  • Rajput S.K., Kumar, M. 2015. Sericin-a unique biomaterial. IOSR Journal of Polymer and Textile Engineering 2(3), 29-35.
  • Sasaki, M., Kato, N., Watanabe, H., Yamada, H. 2000. Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice. Oncology Reports 7(5), 1049-1052.
  • Shaw, J.T.B., Smith, S.G. 1951. Amino-acids of silk sericin. Nature 168 (4278), 745.
  • Sonjui, T., Noomhorm, C., Promboon, A. 2009. Sericin recovery from silk cocoon degumming wastewater by a membrane process. Kasetsart Journal-Natural Science 43(3), 538-549.
  • Takasu, Y., Yamada, H., Tsubouchi, K. 2002. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Bioscience, Biotechnology and Biochemistry 66, 2715-2718.
  • Takasu, Y., Yamada, H., Tamura, T., Sezutsu, H., Mita, K., Tsubouchi, K. 2007. Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 37(11), 1234-1240.
  • Tao, G., Liu, L., Wang, Y., Chang, H., Zhao, P., Zuo, H., He, H. 2016. Characterization of Silver Nanoparticle In Situ Synthesis on Porous Sericin Gel for Antibacterial Application. Journal of Nanomaterials, Article ID 9505704, 8 pages.
  • Terada, S., Nishimura, T., Sasaki, M., Yamada, H., Miki, M. 2003. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40, 3-12.
  • Tokutake, S. 1980. Isolation of the smallest component of silk protein. Biochemistry Journal 187, 413-417.
  • Yang, M., Shuai, Y., Zhou, G., Mandal, N., Zhu, L., Mao, C. 2014. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS Applied Materials & Interfaces 6(16), 13782-13789.
  • Zhang, X., Tsukada, M., Morikawa, H., Aojima, K., Zhang, G., Miura, M. 2011. Production of silk sericin/silk fibroin blend Nanofibers. Nanoscale Research Letters 6 (1), 510.
  • Zhang, Y.Q. 2002. Applications of natural silk protein sericin in biomaterials. Biotechnology Advances 20, 91-100. doi:10.1016/S0734-9750(02)00003-4
  • Zhaorigetu, S., Sasaki, M., Watanabe, H., Kato, N. 2001. Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Bioscience, Biotechnology and Biochemistry 65(10), 2181-2186.
  • Zhu, L.J., Yao,J., Youlu, L. 1998. Structural transformation of sericina dissolved from cocoon layer in hot water. Zhejiang Nongye Daxue Xuebao 24(3), 268-272.

İpek Serisin ve Potansiyel Uygulama Alanları

Yıl 2019, Sayı: 15, 450 - 459, 31.03.2019
https://doi.org/10.31590/ejosat.517226

Öz

İpek, fibroin (lifli protein)
ve serisin (globüler, zamklama proteini) olarak isimlendirilen iki ana
proteinden oluşmaktadır. Fibroin tekstil üretiminde ve çeşitli biyomateryal
uygulamalarda kullanılırken, serisin tekstil endüstrisinde bir atık malzeme olarak
kabul edilmektedir. Serisin, belirsiz bir yapıya sahip çok bileşenli bir
protein olması nedeniyle, fibroinden daha az dikkat çekmiştir, ancak bu
proteinin de biyolojik aktiviteye sahip olduğu ve biyouyumlu olduğu yapılan
çalışmalarla gösterilmiştir. Serisin değişken amino asit bileşimi ve çeşitli
fonksiyonel grupları ile  biyomedikal
uygulamalar için ilgi çekici biyoaktif özelliklere sahiptir. Antioksidan
karakteri, nemlendirme yeteneği ve memeli hücreleri üzerindeki mitojenik etkisi
nedeniyle, serisinin hücre kültürü ve doku mühendisliğinde yararlı olduğu son
yıllarda yapılan çalışmalarla gösterilmiştir. Ayrıca, keratinositler ve
fibroblastlar üzerindeki olumlu etkileri, başta yara bakım malzemeleri olmak
üzere deri dokusu onarımı için serisin bazlı biyomateryallerin gelişmesine yol
açmıştır. Ek olarak, serisin, kemik benzeri hidroksiapatit nükleasyonunu
indükleme kabiliyeti nedeniyle kemik doku mühendisliği için kullanılma
potansiyeline de sahip olduğu gösterilmiştir. Filmler, süngerler ve hidrojeller
gibi kararlı ipek serisin biyomateryalleri, çapraz bağlama veya diğer
polimerler ile karıştırılarak hazırlanmaktadır. Serisin aynı zamanda ilaç
salımı için de kullanılma potansiyeline sahiptir, çünkü kimyasal reaktivitesi
ve pH yanıtı, serisin bazlı nano-mikropartiküllerin, hidrojellerin ve konjuge
moleküllerin üretimini kolaylaştırmakta ve ilaçların biyoaktivitesini
arttırmaktadır. Bu çalışmada, önemli bir protein olan ipek serisinin
özellikleri ve kullanım alanları özetlenmiştir.

Kaynakça

  • Ak, F. 2013. İpek Fibroin Kriyojellerinin Sentezi ve Mekanik Özelliklerinin İncelenmesi. İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 93s, İstanbul.
  • Akturk, O., Tezcaner, A., Bilgili, H., Deveci, M.S., Gecit, M.R., Keskin, D. 2011. Evaluation of sericin/collagen membranes as prospective wound dressing biomaterial. Journal of Bioscience and Bioengineering 112(3), 279-288.
  • Altman, G.H., Diaz, F., Jakuba C., Calabro, T., Horan, R.L., Chen, J., Lu, H., Richmond, J., Kaplan, D.L. 2003. Silk-based biomaterials. Biomaterials 24(3), 401-416.
  • Ampawong, S., Aramwit. P. 2017. In vivo safety and efficacy of sericin/poly(vinyl alcohol)/glycerin scaffolds fabricated by freeze-drying and salt-leaching techniques for wound dressing applications. Journal of Bioactive and Compatible Polymers, 1-14. https://doi.org/10.1177/0883911517694398
  • Ang-atikarnkul, P., Watthanaphanit, A., Rujiravanit R. 2014. Fabrication of cellulose nanofiber/chitin whisker/silk sericin bionanocomposite sponges and characterizations of their physical and biological properties.. Composites Science and Technology 96, 88-96.
  • Aramwit, P., Kanokpanont, S., De-Eknamkul, W., Srichana, T. 2009. Monitoring of inflammatory mediators induced by silk sericin. Journal of Bioscience and Bioengineering 107, 556-561.
  • Aramwit, P., Palapinyo, S., Srichana, T., Chottanapund, S., Muangman, P. 2013. Silk sericin ameliorates wound healing and its clinical efficacy in burn wounds. Archives of Dermatological Research 305, 585-594.
  • Aramwit, P., Siritientong, T., Srichana, T. 2011. Potential applications of silk sericin, a natural protein from textile industry by-products. Waste Management & Research 30(3), 217-224. DOI: 10.1177/0734242X11404733
  • Chen, F., Porter, D., Vollrath, F. 2012. Structure and physical properties of silkworm cocoons. Journal of the Royal Society Interface 9, 2299-2308.
  • Çalamak, S. 2012. Yara Örtüsü Olarak İpek Bazlı Antibakteriyel Biyonanotekstillerin Üretimi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 104s, Ankara.
  • Dash, B.C., Mandal, B.B., Kundu, S.C. 2009. Silk gland sericin proteinmembranes: fabrication and characterization for potential biotechnological applications. Journal of Biotechnology 144(4), 321-329.
  • Dash, R., Acharya, C., Bindu, P.C., Kundu, S.C. 2007. Antioxidant potential of silk protein sericin against hydrogen peroxide-induced oxidative stress in skin fibroblasts. BMB Reports 41, 236-41.
  • Ersel, M., Uyanikgil,Y., Karbek Akarca, F., Ozcete, E., Altunci, Y.A., Karabey, F., Cavusoglu, T., Meral, A., Yigitturk, G., Cetin, E.O. 2016. Effects of Silk Sericin on Incision Wound Healing in a Dorsal Skin Flap Wound Healing Rat Model. Medical Science Monitor, 22, 1064-1078. DOI: 10.12659/MSM.897981
  • Eslah, S., Tavanai, H., Morshed, M. 2016. Electrospinning and characterization of poly (vinyl alcohol)-sericin nanofibers as a potential for tissue engineering applications,. The Journal of The Textile Institute 107, 949-957. http://dx.doi.org/10.1080/00405000.2015.1072328
  • Fan, J.B., Wu, L.P., Chen, L.S., Mao, X.Y., Ren, F.Z. 2009. Antioxidant activities of silk sericin from silkworm Bombyx mori. Journal of Food Biochemistry 33, 74-88.
  • Freddi, G., Mossotti, R., Innocenti, R. 2003. Degumming of silk fabric with several proteases. Journal of Biotechnology 106, 101-112.
  • Garel, A., Deleage, G., Prudhomme, J.C. 1997. Structure and organization of the Bombyx mori sericin 1 gene and of the sericins 1 deduced fromthe sequence of the Ser 1B Cdna. Insect Biochemistry and Molecular Biology 27(5), 469-477.
  • Gilotra, S., Chouhan, D., Bhardwaj, N., Nandi, S.K., Mandal, B.B. 2018. Potential of silk sericin based nanofibrous mats for wound dressing applications. Materials Science & Engineering C 90, 420-432. https://doi.org/10.1016/j.msec.2018.04.077
  • Gimenes, M.L., Silva, V.R., Vieira, M.G.A, Da Silva, M.G.C., Scheer, A.P. 2014. High molecular sericin from Bombyx mori cocoons: extraction and recovering by ultrafiltration. International Journal of Chemical Engineering and Applications 5(3), 266-271.
  • Hardy, J.G., Römer, L.M., Scheibel, T.R. 2008. Polymeric materials based on silk proteins. Polymer 49, 4309-4327.
  • He, H., Cai, R., Wang, Y., Tao, G., Guo, P., Zuo, H., Chen, L., Liu, X., Zhao, P., Xia. Q. 2017. Preparation and characterization of silk sericin/PVA blend film with silver nanoparticles for potential antimicrobial application. International Journal of Biological Macromolecules 104, 457-464.
  • He, M., Hu, H., Wang, P., Fu, H., Yuan, J., Wang, Q., Fan, X. 2018. Preparation of a bio-composite of sericin-g-PMMA via HRP-mediated graft copolymerization. International Journal of Biological Macromolecules 117, 323-330.
  • Islam, S., Shahid, M., and Mohammad, F. 2013. Green Chemistry Approaches to Develop Antimicrobial Textiles Based on Sustainable Biopolymers A Review. Industrial & Engineering Chemistry Research 52, 5245-5260. dx.doi.org/10.1021/ie303627x
  • Karahaliloglu, Z., Kilicay, E., Denkbas, E.B. 2017. Antibacterial chitosan/silk sericin 3D porous scaffolds as a wound dressing material. Artificial Cells, Nanomedicine, and Biotechnology 45, 1172-1185.
  • Kimura, K., Oyama, F., Ueda, H., Mizuno, S., Shimura, K. 1985. Molecular cloning of the fibroin light chain complementary DNA and its use in the study of the expression of the light chain gene in the posterior silk gland of Bombyx mori. Experientia 41(9), 1167-1171.
  • Kumar, P., Kumar, D., Sikka, P., Singh, P. 2015. Sericin supplementation improves semen freezability of buffalo bulls by minimizing oxidative stress during cryopreservation. Animal Reproduction Science 152, 26-31.
  • Kunz, R.I., Brancalhão, R.M.S., Ribeiro, L.F.C., Natali, M.R.M. 2016. Silkworm Sericin: Properties and Biomedical Applications. BioMed Research International 2016, Article ID 8175701, 19 pages http://dx.doi.org/10.1155/2016/8175701
  • Kwak, H.W., Lee, K.H. 2018. Polyethylenimine-functionalized silk sericin beads for highperformance remediation of hexavalent chromium from aqueous solution. Chemosphere 207, 507-516. https://doi.org/10.1016/j.chemosphere.2018.04.158
  • Kweon, H.Y., Yeo, J.H., Lee, K.G., Lee, Y.W., Park, Y.H., Nahm, J.H., Cho, C.S. 2000. Effects of poloxamer on the gelation of silk sericin. Macromolecular Rapid Communications 21, 1302-1305.
  • Lamboni, L., Li, Y., Liu, J., Yang, G. 2016. Silk Sericin-Functionalized Bacterial Cellulose as a Potential Wound-Healing Biomaterial. Biomacromolecules 17, 3076-3084. DOI: 10.1021/acs.biomac.6b00995
  • Michaille, J.J., Garel, A., Prudhomme, J.C. 1990. Cloning and characterization of the highly polymorphic Ser2 gene of Bombyx mori. Gene 86(2), 177-84.
  • Mondal, M., Trivedy, K. Kumar, S.N. 2007. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.-a review. Caspian Journal of Environmental Sciences 5(2), 63-76.
  • Nayak, S., Kundu, S.C. 2014. Sericin–carboxymethyl cellulose porous matrices as cellular wound dressing material. Journal of Biomedical Material Research Part A 2014:102A, 1928-1940.
  • Nishida, A., Yamada, M., Kanazawa, T., Takashima, Y., Ouchi,K., Okada, H. 2011. Sustained-release of protein from biodegradable sericin film, gel and sponge,” International Journal of Pharmaceutics 407, 44-52.
  • Padamwar, M.N., Pawar, A.P. 2004. Silk sericin and its applications: A review. Journal of Scientific and Industrial Research 63, 323-329.
  • Padamwar, M.N., Pawar, A.P., Daithankar, A.V., Mahadik, K.R. 2005. Silk sericin as a moisturizer: an in vivo study. Journal of Cosmetic Dermatology 4, 250-257.
  • Panilaitis, B., Altman, G.H., Chen, J., Jin, H.J., Karageorgiou, V., Kaplan, D.L. 2003. Macrophage responses to silk. Biomaterials 24(18), 3079-3085.
  • Pankaew, P., Klumdoung, P., Naemchanthara, K. 2015. A Study of the Preparation of Silk Sericin/Chitosan Composite Film for Future Wound Dressing Applications. Applied Mechanics and Materials 804, 179-182.
  • Rajput S.K., Kumar, M. 2015. Sericin-a unique biomaterial. IOSR Journal of Polymer and Textile Engineering 2(3), 29-35.
  • Sasaki, M., Kato, N., Watanabe, H., Yamada, H. 2000. Silk protein, sericin, suppresses colon carcinogenesis induced by 1,2-dimethylhydrazine in mice. Oncology Reports 7(5), 1049-1052.
  • Shaw, J.T.B., Smith, S.G. 1951. Amino-acids of silk sericin. Nature 168 (4278), 745.
  • Sonjui, T., Noomhorm, C., Promboon, A. 2009. Sericin recovery from silk cocoon degumming wastewater by a membrane process. Kasetsart Journal-Natural Science 43(3), 538-549.
  • Takasu, Y., Yamada, H., Tsubouchi, K. 2002. Isolation of three main sericin components from the cocoon of the silkworm, Bombyx mori. Bioscience, Biotechnology and Biochemistry 66, 2715-2718.
  • Takasu, Y., Yamada, H., Tamura, T., Sezutsu, H., Mita, K., Tsubouchi, K. 2007. Identification and characterization of a novel sericin gene expressed in the anterior middle silk gland of the silkworm Bombyx mori. Insect Biochemistry and Molecular Biology 37(11), 1234-1240.
  • Tao, G., Liu, L., Wang, Y., Chang, H., Zhao, P., Zuo, H., He, H. 2016. Characterization of Silver Nanoparticle In Situ Synthesis on Porous Sericin Gel for Antibacterial Application. Journal of Nanomaterials, Article ID 9505704, 8 pages.
  • Terada, S., Nishimura, T., Sasaki, M., Yamada, H., Miki, M. 2003. Sericin, a protein derived from silkworms, accelerates the proliferation of several mammalian cell lines including a hybridoma. Cytotechnology 40, 3-12.
  • Tokutake, S. 1980. Isolation of the smallest component of silk protein. Biochemistry Journal 187, 413-417.
  • Yang, M., Shuai, Y., Zhou, G., Mandal, N., Zhu, L., Mao, C. 2014. Tuning molecular weights of Bombyx mori (B. mori) silk sericin to modify its assembly structures and materials formation. ACS Applied Materials & Interfaces 6(16), 13782-13789.
  • Zhang, X., Tsukada, M., Morikawa, H., Aojima, K., Zhang, G., Miura, M. 2011. Production of silk sericin/silk fibroin blend Nanofibers. Nanoscale Research Letters 6 (1), 510.
  • Zhang, Y.Q. 2002. Applications of natural silk protein sericin in biomaterials. Biotechnology Advances 20, 91-100. doi:10.1016/S0734-9750(02)00003-4
  • Zhaorigetu, S., Sasaki, M., Watanabe, H., Kato, N. 2001. Supplemental silk protein, sericin, suppresses colon tumorigenesis in 1,2-dimethylhydrazine-treated mice by reducing oxidative stress and cell proliferation. Bioscience, Biotechnology and Biochemistry 65(10), 2181-2186.
  • Zhu, L.J., Yao,J., Youlu, L. 1998. Structural transformation of sericina dissolved from cocoon layer in hot water. Zhejiang Nongye Daxue Xuebao 24(3), 268-272.
Toplam 52 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Zehra Gün Gök 0000-0001-6426-0395

Mustafa Yiğitoğlu Bu kişi benim 0000-0002-6024-9129

İbrahim Vargel 0000-0001-8723-1597

Yayımlanma Tarihi 31 Mart 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 15

Kaynak Göster

APA Gün Gök, Z., Yiğitoğlu, M., & Vargel, İ. (2019). İpek Serisin ve Potansiyel Uygulama Alanları. Avrupa Bilim Ve Teknoloji Dergisi(15), 450-459. https://doi.org/10.31590/ejosat.517226