Araştırma Makalesi
BibTex RIS Kaynak Göster

Sonlu Eleman Yöntemi İle Düz Dişlilerde Temas Gerilmelerinin İncelenmesi

Yıl 2019, Sayı: 17, 539 - 545, 31.12.2019
https://doi.org/10.31590/ejosat.629155

Öz

Dişliler, endüstriyel uygulamalarda güç aktarmında kullanılan en kritik elemenlardan bir tanesidir. Düz dişliler ise paralel şaftlarda güç ve dönme harekerini aktarmada kullanılmaktadır. Düz dişliler en basit dişli çark çeşididir. Diş yüzeyindeki temas baskısı, malzemenin yüzey yorulmasına karşı dayanımını aştığı zaman dişli yüzeyinde karıncalanma şeklinde oluşmaktadır. Bu çalışmada statik şartlar altında, sonlu elemanlar yöntemi kullanılarak, düz dişli çarklarda diş yüzeyindeki temas gerilmeleri incelenmektedir. Dişli çiftinin çalışması esnasında oluşan yüzey temas gerilmesinin değeri, dişli çarkın istenen gücü dişli yüzeyine kalıcı bir zarar vermeden iletebilmesi için önemlidir. Dişlilerdeki temas gerilmeleri son yıllardaki çalışmalarda önemli bir yer tutmuştur, ancak yine de bu temas gerilmelerine etki eden çeşitli parametrelerin anlaşılması için kapsamlı araştırmalar gerekmektedir. Bu parametreler arasında yüzey temas gerilmesini en çok etkileyenler; diş sayısı, modül ve diş genişliği sayılabilir. Bu çalışmada, düz dişli çarkların yüzeyindeki temas gerilmeleri, farklı parametrelerin etkisini görmek için, bir tanesi değiştrilip, diğerleri sabit tutularak, AGMA denklemleri ve sonlu elemanlar metodu (SEM) kullanılarak hesaplanmıştır. Dişli geometrileri bir projede hazırlanan bilgisayar programıyla elde edilerek SolidWorks katı modellemeye aktarılıp 2B dişli yüzeyleri elde edilmiştir. Bu dişli yüzeyleri kullanarak MSC SimXpert yazılımıyla SEM analizi için ağ oluşturulmuş, SEM analizleri ise MSC Marc yazılımıyla yapılmıştır. SEM ile elde edilen yüzey temas gerilimleri, teorik denklemlerle elde edilen sonuçlardan daha düşüktür ve fark yaklaşık yüzde 8’dir. Yüzey temas gerilmesi değerleri, geometrik parametrelerin (diş sayısı, modül, diş genişliği) artmasıyla azalmıştır. 

Kaynakça

  • Marimuthu, P. and Muthuveerappan, G. (2016). Design of asymmetric normal contact ratio spur gear drive through direct design to enhance the load carrying capacity. Mechanism and Machine Theory, 95, 22-34.
  • Zhan, J. Fard, M. and Jazar, R. (2015). A quasi-static FEM for estimating gear load capacity. Measurement, 75, 40-49.
  • Farhan, M. Karuppanan, S. and Patil, S. S. (2015). Frictional contact stress analysis of spur gear by using Finite Element Method. in Applied Mechanics and Materials, 772, 159-163. Trans Tech Publications.
  • Sankpal, A. M. and Mirza, M. M. (2014). Contact stress analysis of spur gear by photoelastic technique and Finite Element Analysis. International Journal on Theoretical and Applied Research in Mechanical Engineering, ISSN (Print): 2319-3182, 3(2), 39-43.
  • Patil, S. S. Karuppanan, S. Atanasovska, I. and Wahab, A. A. (2014). Contact stress analysis of helical gear pairs, including frictional coefficients. International Journal of Mechanical Sciences, 85, 205-211.
  • Karaveer, V. Mogrekar, A. and Joseph, T. P. R. (2013). Modeling and Finite Element Analysis of Spur Gear, International Journal of Current Engineering and Technology, 3(5), 2104-2107.
  • Hwang, S. C. Lee, J. H. Lee, D. H. Han, S. H. Lee, K. H. (2013). Contact stress analysis for a pair of mating gears, Mathematical and Computer Modelling. 57, 40-49.
  • Patil, S. Karuppanan, S. and Wahab, A. A. (2013). Contact Pressure evaluation of a gear pair along the line of action using finite element analysis. In Applied Mechanics and Materials, 393, 403-408.
  • Gupta, B. Choubey, A. and Varde G. V. (2012). Contact Stress Analysis of Spur Gear, International Journal of Engineering Research and Technology (IJERT), ISSN: 2278-0181, 1(4), 1-7.
  • Shinde, S. P. Nikam, A. A. and Mulla, T. S. (2010). Static Analysis of Spur Gear using Finite Element Analysis. IOSR Journal of Mechanical and Civil Engineering, ISSN: 2278-1684, pp. 26-31.
  • Tesfahunegn, Y. A. Rosa, F. Gorla, C. (2010). The Effects of the shape of Tooth Profile Modification on the Transmission Error Bending and Contact Stresses of Spur Gears. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(8), 1749-1758.
  • Şahin B. Akpolat A. Yildirim O. Uctu O. Ersoz A. (2014). Development of a user friendly interface for design and analysis of parallel axes gears based on international standards including quasi static transmission error curves. International Gear Conference, Lyon, 395-405.
  • Şahin B. (2015). Development of user friendly interface software for design and analysis of parallel axes external gears including quasi-static transmission error calculations. Master Thesis, University of Gaziantep.
  • AGMA 2101:D04. (2010). Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.

Analysis of Contact Stresses in Spur Gears by Finite Element Method

Yıl 2019, Sayı: 17, 539 - 545, 31.12.2019
https://doi.org/10.31590/ejosat.629155

Öz

Gears are one of the most critical elements in power transmission because it plays a significant role in the industry. Spur gear is used to transmit power and rotary motion between parallel shafts. It is one of the simplest types of the gears. Surface failure of the gear tooth is a pitting when contact stress is exceeding the strength of the material to surface fatigue. This paper studies the contact stresses in the contact zone among the spur gear pairs by using finite element method under static conditions. Contact stress among the gear tooth pair’s engagement determines the facility of the gear to transmit the power without harm. The contact stress in gears has played an important role for last years, but an extensive research is still required to understand the several parameters affecting this stress. Among these parameters, the most important factors affecting the surface contact stress are; number of teeth, module and face width. In the present study, the contact stress in spur gear is calculated by changing one of these parameters and keeping remaining constant to obtain the influence of each parameter on contact stress separately based on AGMA's equations and finite element method (FEM). A computer program is used to build up the gears by using homemade software and SolidWorks. The results of the FEM analyses from MSC Software (MARC) are presented. These results are compared with the theoretical results (AGMA’s equations). The contact stress achieved by FEM is lower than the obtained results by AGMA's equations and the corresponding percent difference detected are about 8 %. The results of the contact stress analysis specify that increasing the values of geometrical parameters (number of teeth, module and face width) lead to decrease in the tooth contact stress.

Kaynakça

  • Marimuthu, P. and Muthuveerappan, G. (2016). Design of asymmetric normal contact ratio spur gear drive through direct design to enhance the load carrying capacity. Mechanism and Machine Theory, 95, 22-34.
  • Zhan, J. Fard, M. and Jazar, R. (2015). A quasi-static FEM for estimating gear load capacity. Measurement, 75, 40-49.
  • Farhan, M. Karuppanan, S. and Patil, S. S. (2015). Frictional contact stress analysis of spur gear by using Finite Element Method. in Applied Mechanics and Materials, 772, 159-163. Trans Tech Publications.
  • Sankpal, A. M. and Mirza, M. M. (2014). Contact stress analysis of spur gear by photoelastic technique and Finite Element Analysis. International Journal on Theoretical and Applied Research in Mechanical Engineering, ISSN (Print): 2319-3182, 3(2), 39-43.
  • Patil, S. S. Karuppanan, S. Atanasovska, I. and Wahab, A. A. (2014). Contact stress analysis of helical gear pairs, including frictional coefficients. International Journal of Mechanical Sciences, 85, 205-211.
  • Karaveer, V. Mogrekar, A. and Joseph, T. P. R. (2013). Modeling and Finite Element Analysis of Spur Gear, International Journal of Current Engineering and Technology, 3(5), 2104-2107.
  • Hwang, S. C. Lee, J. H. Lee, D. H. Han, S. H. Lee, K. H. (2013). Contact stress analysis for a pair of mating gears, Mathematical and Computer Modelling. 57, 40-49.
  • Patil, S. Karuppanan, S. and Wahab, A. A. (2013). Contact Pressure evaluation of a gear pair along the line of action using finite element analysis. In Applied Mechanics and Materials, 393, 403-408.
  • Gupta, B. Choubey, A. and Varde G. V. (2012). Contact Stress Analysis of Spur Gear, International Journal of Engineering Research and Technology (IJERT), ISSN: 2278-0181, 1(4), 1-7.
  • Shinde, S. P. Nikam, A. A. and Mulla, T. S. (2010). Static Analysis of Spur Gear using Finite Element Analysis. IOSR Journal of Mechanical and Civil Engineering, ISSN: 2278-1684, pp. 26-31.
  • Tesfahunegn, Y. A. Rosa, F. Gorla, C. (2010). The Effects of the shape of Tooth Profile Modification on the Transmission Error Bending and Contact Stresses of Spur Gears. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 224(8), 1749-1758.
  • Şahin B. Akpolat A. Yildirim O. Uctu O. Ersoz A. (2014). Development of a user friendly interface for design and analysis of parallel axes gears based on international standards including quasi static transmission error curves. International Gear Conference, Lyon, 395-405.
  • Şahin B. (2015). Development of user friendly interface software for design and analysis of parallel axes external gears including quasi-static transmission error calculations. Master Thesis, University of Gaziantep.
  • AGMA 2101:D04. (2010). Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdullah Akpolat 0000-0001-5607-4349

Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 17

Kaynak Göster

APA Akpolat, A. (2019). Analysis of Contact Stresses in Spur Gears by Finite Element Method. Avrupa Bilim Ve Teknoloji Dergisi(17), 539-545. https://doi.org/10.31590/ejosat.629155