Araştırma Makalesi
BibTex RIS Kaynak Göster

Geochemistry of the Volcanic Rocks of the Yüksekova Complex near Güneyköy (SE of Elazığ, E Turkey)

Yıl 2019, Sayı: 17, 1125 - 1133, 31.12.2019
https://doi.org/10.31590/ejosat.653983

Öz

Some of the volcanic products of the Yüksekova Complex crop out in the Güneyköy (SE Elazığ, E Turkey) area in the Southeast Anatolian Suture Belt. This study reports the whole rock geochemical data of the volcanics of the Upper Cretaceous Yüksekova Complex around Güneyköy. The volcanic rocks are burgundy and greenish in color. The rocks are massive or have distinct pillow structure. The volcanic rocks occasionally showing spilitization have basaltic composition and tholeiitic character. The rocks are mainly composed of plagioclases and to a lesser extent clinopyroxene and pseudomorphic olivine minerals. In thin-sections microlytic and hyalomicrolytic porphyritic textures, as well as spherulitic and amygdaloidal textures are common. The secondary minerals are calcite and epidote. In binary diagrams, the Zr, is considered as immobile and index element; show positive correlation with Al2O3, TiO2, Nb, Y, Hf, whereas show negative correlation with CaO showing plagioclase, clinopyroxene, olivine and Fe-Ti oxide fractionation during the evolution of the volcanics. N-type mid-ocean ridge basalt-normalized trace element distributions of the rock samples indicate enrichment in large-ion lithophile elements (LILE) and Th, and negative anomalies in Ta, Nb, Ti and P elements. The chondrite normalized diagrams of the samples show an approximately parallel and straight trend (LaN/SmN: 0.93-2.13; LaN/LuN: 0.23-0.89), suggesting a similar source for the volcanic rocks. The geochemical implications such as negative Nb anomaly, depleted HFS element abundances and enriched LIL element pattern indicate the contribution of a subducting plate. As a result, the volcanites in the near of Güneyköy (Elazığ) are members of the Yüksekova Complex and were formed in an intra-oceanic arc environment within the Southern Branch of Neotethys.

Destekleyen Kurum

Fırat Üniversitesi-FÜBAP

Proje Numarası

MF-17.16

Teşekkür

This study was financially supported in part by Fırat University (FUBAP-MF.17.16) project. Prof. Dr. M. C. Goncuoglu is gratefully acknowledged for his comments and suggestions on the manuscript.

Kaynakça

  • Akgül, M. (1991). Baskil Granitoyitinin petrografik ve petrolojik özellikleri. Yerbilimleri/Geosound, 18, 67 - 78.
  • Akgül, B. (1993). Piran (Elazığ) köyü çevresindeki magmatik kayaçların petrografik ve petrolojik özellikleri, F.Ü. Fen. Bilim. Ens., Doktora Tezi, 128 s. Elazığ.
  • Altunbey, M., & Sağıroğlu A. (1995). Koçkale-Elazığ manganez cevherleşmelerinin özellikleri ve kökeni, MTA Dergisi, 117, 139-148.
  • Barrett, T.J., & MacLean, W.H. (1999). Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. Reviews in Economic Geology, 8, 101–113.
  • Çelik, H. (2003). Stratigraphical and tectonic characteristics of Master Mountain and Adjacent Area (SE of Elazığ]. PhD Thesis, Fırat University [in Turkish with English abstract, unpublished].
  • Ertürk, M.A., Beyarslan, M., Chung, S.L., & Lin, T.H. (2018). Eocene magmatism (Maden Complex) in the Southeast Anatolian orogenic belt: Magma genesis and tectonic implications, Geoscience Frontiers, 9(6), 1829-1847.
  • Göncüoğlu, M.C. (2014). Comments on a single versus multiarmed Southern Neotethys in SE Turkey and Iran. 3rd Intern. Symp. of IGCP 589 Development of the Asian Tethyan realm. Abstr. and Proceed., 89-95.
  • Göncüoglu, M.C., Dirik K.., & Kozlu H. (1997). General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Ann. Géol. Pays Hellén., 37, 515-536.
  • Hempton, M.R. (1985). Structure and deformation history of the Bitlis suture near Lake Hazar, southeastern Turkey. Geological Society of American Bulletin, 96, 233-243.
  • Hempton, M. R., & Savcı, G. (1982). Petrological and structural features of Elazığ volcanic complex. Geological Bulletin of Turkey, 25(2), 143-151.
  • Kaya, A. (2004). Gezin (Maden-Elazığ) Çevresinin Jeolojisi. Mühendislik Bilimleri Dergisi, 10(1) 41-50.
  • Köküm, M., & İnceöz, M. (2018). Structural analysis of the northern part of the East Anatolian Fault System. Journal of Structural Geology, 114, 55-63.
  • Moghadam, H. S. Whitechurch, H., Rahgoshay, M., & Monsef, I. (2009). Significance of Nain-Baft ophiolitic belt (Iran): Short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. Comptes Rendus Geoscience, 341(12), 1016-1028.
  • M.T.A, (2002). Geological Map of Turkey, 1:500.000 scale the Erzurum Quad-rangale. Gen. Direc. of Min. Res. and Expl., Ankara, Turkey.
  • Özkan, Y.Z., & Öztunalı, O. (1984). Petrology of the magmatic rocks of Guleman ophiolite. Tekeli, O. ve Göncüoğlu, M.C. (eds.), Geology of theTaurus Belt, Proceedings, 285-293. Parlak, O., Höck, V., Kozlu, H., & Delaloye, M. (2004). Oceanic crust generation in an island arc tectonic setting, SE Anatolian orogenic belt. Geological Magazine, 141, 583-603.
  • Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, 100, 14-48.
  • Perincek, D. (1979). The geology of Hazro-Korudağ-Çüngüş-Maden-Ergani-Hazar-Elazığ-Malatya Area, Guide Book, The Geological Society of Turkey, 33.
  • Rizeli, M.E., Beyarslan, M., Wang, K.L., & Bingöl, A.F. (2016). Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): Evidence of a forearc setting. Journal of African Earth Sciences, 123, 392-402.
  • Robertson, A.H., Ustaömer, T., Parlak, O., Ünlügenç, U.C., Taşlı, K., & Inan, N. (2006). The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous – Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences, 27 (1), 108-145.
  • Ross, P.S., & Bedard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Science, 46, 823-839.
  • Sun, S.S., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Magmatism in the ocean basins, Saunders, A.D. and Norry, M. J. (Eds.), Geological Society of London, 42, 313-345.
  • Sungurlu O., Perincek D., Kurt G., Tuna E., Dülger S., Celikdemir E., & Naz H. (1985). Geology of the Elazığ-Hazar-Palu area. Bull. Turk. Ass. Petrol. Geol., 29, 83-191.
  • Şaşmaz, A., Türkyılmaz, B., Öztürk, N., Yavuz, F., & Kumral, M. (2014). Geology and geochemistry of Middle Eocene Maden complex ferromanganese deposits from the Elazığ–Malatya region, eastern Turkey. Ore Geology Reviews, 56, 352-372.
  • Şengör, A.M.C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach.. Tectonophysics, 75, 181-241.
  • Tekin, U.K. Ural, M., Göncüoğlu, M. C. Arslan, M., & Kürüm, S. (2015). Upper Cretaceous Radiolarian ages from an arc–back-arc within the Yüksekova Complex in the southern Neotethys mélange, SE Turkey. Comptes Rendus Palevol, 14(2), 73-84.
  • Ural, M. (2012). Petrochemistry, petrology and age of the basic volcanites of the Yüksekova Complex around Elazığ and Malatya, Ph.D. thesis, Fırat University,174.
  • Ural, M., Göncüoğlu, M.C., Arslan, M., Tekin, U.K., & Kürüm, S. (2014). Petrological and paleontological evidence for generation of an arc-back arc system within the closing southern branch of Neotethys during the Late Cretaceous. Bull. Shk. Gjeol., Special Issue 2, 51-54.
  • Ural, M., Arslan, M., Göncüoğlu, M. C., Tekin, U. K. & Kürüm, S. (2015). Late Cretaceous arc and back-arc formation within the Southern Neotethys: whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazığ, SE Turkey). Ofioliti, 40 (1).
  • Uysal, I., Kapsiotis A., Akmaz, M., Saka, S., & Seitz, M. (2018). The Guleman ophiolitic chromitites (SE Turkey) and their link to a compositionally evolving mantle source during subduction initiation. Ore Geology Reviews, 93, 98-113.
  • Winchester, J.A., & Floyd, P.A. (1977). Geochemical Discrimination of Different Magma Series and Their Differentiation Product Using Immobile Elements. Chemical Geology, 20, 325-343.
  • Yazgan, E. (1984). Geodynamic evolution of the eastern Taurus Region (Malatya-Elazıg area, Turkey). In: Tekeli, O., Göncüoğlu, M.C. (Eds.): Geology of the Taurus Belt. Proc. of Int. Sym., Publ. of Min. Res. and Expl. Inst. of Turkey, Ankara, 199-208.
  • Yılmaz, Y. (1993). New evidence and model evolution of the southeast anatolian orogen. Geological Society of America Bulletin, 105, 251-271.
  • Yılmaz, Y., Yiğitbaş, E., & Genç, S. (1993). Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics, 12(5), 1280-1297.

Güneyköy civarındaki (GD Elazığ, D Türkiye) Volkanik kayaçların (Yüksekova Karmaşığı) Jeokimyası

Yıl 2019, Sayı: 17, 1125 - 1133, 31.12.2019
https://doi.org/10.31590/ejosat.653983

Öz

Güneydoğu Anadolu Sütur Kuşağında, Yüksekova Karmaşığı birimine ait volkanik kayaçların Güneyköy çevresindeki yüzlekleri bu çalışmada ele alınmıştır. Bu volkanik kayaçlar bordo ve yeşilimsi renk tonlarındadır. Kayaçlar masif görünümlü ve yer yer de belirgin yastık yapısındadır. Yer yer spilitleşmeler gösteren volkanitler bazaltik bileşimlidirler. Bazik kayaçlar genel olarak, plajiyoklas ve psödömorf olivin minerallerinden oluşmaktadırlar. Kayaçlarda, hiyalomikrolitik porfirik, amigdaloidal ve sferulitik dokular yaygındır. Kalsit, epidot oluşumları da mevcuttur. Volkanik kayaçlar bazik bileşimli ve toleyitik karakterlidir. İkili değişim diyagramlarında kayaç örnekleri hareketsiz element olarak Zr’a karşı; CaO, MgO, Cr2O3 ve Sc ile negatif; TiO2, P2O5, Y, Nb, Hf ve Th ile ise pozitif korelasyon göstermektedir ki, bu ilişkiler fraksiyonel kristalleşmeye işaret eder. Kayaç örneklerinin N-tipi Okyanus Ortası Sırtı Bazaltına (N-MORB) normalize edilmiş iz element dağılımları; LIL Elementler bakımından MORB a göre zenginleşme, HFSE ler bakımından ise MORB çizgisine paralel fakat nisbeten fakirleşme gösterir. Örneklerin kondrite normalize edilmiş diyagramları ise kondrite göre paralel ve yaklaşık düz bir trend sergilemektedir. Negatif Nb anomalisiyle birlikte, tüketilmiş HFSE ve zenginleşmiş LIL element deseni yitim katkısına işaret etmektedir. Sonuç olarak, Güneyköy (Elazığ) çevresi volkanik kayaç örnekleri bir okyanus içi yay ortamında oluşmuşlardır.

Proje Numarası

MF-17.16

Kaynakça

  • Akgül, M. (1991). Baskil Granitoyitinin petrografik ve petrolojik özellikleri. Yerbilimleri/Geosound, 18, 67 - 78.
  • Akgül, B. (1993). Piran (Elazığ) köyü çevresindeki magmatik kayaçların petrografik ve petrolojik özellikleri, F.Ü. Fen. Bilim. Ens., Doktora Tezi, 128 s. Elazığ.
  • Altunbey, M., & Sağıroğlu A. (1995). Koçkale-Elazığ manganez cevherleşmelerinin özellikleri ve kökeni, MTA Dergisi, 117, 139-148.
  • Barrett, T.J., & MacLean, W.H. (1999). Volcanic sequences, lithogeochemistry, and hydrothermal alteration in some bimodal volcanic-associated massive sulfide systems. Reviews in Economic Geology, 8, 101–113.
  • Çelik, H. (2003). Stratigraphical and tectonic characteristics of Master Mountain and Adjacent Area (SE of Elazığ]. PhD Thesis, Fırat University [in Turkish with English abstract, unpublished].
  • Ertürk, M.A., Beyarslan, M., Chung, S.L., & Lin, T.H. (2018). Eocene magmatism (Maden Complex) in the Southeast Anatolian orogenic belt: Magma genesis and tectonic implications, Geoscience Frontiers, 9(6), 1829-1847.
  • Göncüoğlu, M.C. (2014). Comments on a single versus multiarmed Southern Neotethys in SE Turkey and Iran. 3rd Intern. Symp. of IGCP 589 Development of the Asian Tethyan realm. Abstr. and Proceed., 89-95.
  • Göncüoglu, M.C., Dirik K.., & Kozlu H. (1997). General characteristics of pre-Alpine and Alpine Terranes in Turkey: Explanatory notes to the terrane map of Turkey. Ann. Géol. Pays Hellén., 37, 515-536.
  • Hempton, M.R. (1985). Structure and deformation history of the Bitlis suture near Lake Hazar, southeastern Turkey. Geological Society of American Bulletin, 96, 233-243.
  • Hempton, M. R., & Savcı, G. (1982). Petrological and structural features of Elazığ volcanic complex. Geological Bulletin of Turkey, 25(2), 143-151.
  • Kaya, A. (2004). Gezin (Maden-Elazığ) Çevresinin Jeolojisi. Mühendislik Bilimleri Dergisi, 10(1) 41-50.
  • Köküm, M., & İnceöz, M. (2018). Structural analysis of the northern part of the East Anatolian Fault System. Journal of Structural Geology, 114, 55-63.
  • Moghadam, H. S. Whitechurch, H., Rahgoshay, M., & Monsef, I. (2009). Significance of Nain-Baft ophiolitic belt (Iran): Short-lived, transtensional Cretaceous back-arc oceanic basins over the Tethyan subduction zone. Comptes Rendus Geoscience, 341(12), 1016-1028.
  • M.T.A, (2002). Geological Map of Turkey, 1:500.000 scale the Erzurum Quad-rangale. Gen. Direc. of Min. Res. and Expl., Ankara, Turkey.
  • Özkan, Y.Z., & Öztunalı, O. (1984). Petrology of the magmatic rocks of Guleman ophiolite. Tekeli, O. ve Göncüoğlu, M.C. (eds.), Geology of theTaurus Belt, Proceedings, 285-293. Parlak, O., Höck, V., Kozlu, H., & Delaloye, M. (2004). Oceanic crust generation in an island arc tectonic setting, SE Anatolian orogenic belt. Geological Magazine, 141, 583-603.
  • Pearce, J.A. (2008). Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust, Lithos, 100, 14-48.
  • Perincek, D. (1979). The geology of Hazro-Korudağ-Çüngüş-Maden-Ergani-Hazar-Elazığ-Malatya Area, Guide Book, The Geological Society of Turkey, 33.
  • Rizeli, M.E., Beyarslan, M., Wang, K.L., & Bingöl, A.F. (2016). Mineral chemistry and petrology of mantle peridotites from the Guleman ophiolite (SE Anatolia, Turkey): Evidence of a forearc setting. Journal of African Earth Sciences, 123, 392-402.
  • Robertson, A.H., Ustaömer, T., Parlak, O., Ünlügenç, U.C., Taşlı, K., & Inan, N. (2006). The Berit transect of the Tauride thrust belt, S Turkey: Late Cretaceous – Early Cenozoic accretionary/collisional processes related to closure of the Southern Neotethys. Journal of Asian Earth Sciences, 27 (1), 108-145.
  • Ross, P.S., & Bedard, J.H., 2009. Magmatic affinity of modern and ancient subalkaline volcanic rocks determined from trace-element discriminant diagrams. Canadian Journal of Earth Science, 46, 823-839.
  • Sun, S.S., & McDonough, W.F. (1989). Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and processes. In: Magmatism in the ocean basins, Saunders, A.D. and Norry, M. J. (Eds.), Geological Society of London, 42, 313-345.
  • Sungurlu O., Perincek D., Kurt G., Tuna E., Dülger S., Celikdemir E., & Naz H. (1985). Geology of the Elazığ-Hazar-Palu area. Bull. Turk. Ass. Petrol. Geol., 29, 83-191.
  • Şaşmaz, A., Türkyılmaz, B., Öztürk, N., Yavuz, F., & Kumral, M. (2014). Geology and geochemistry of Middle Eocene Maden complex ferromanganese deposits from the Elazığ–Malatya region, eastern Turkey. Ore Geology Reviews, 56, 352-372.
  • Şengör, A.M.C., & Yılmaz, Y. (1981). Tethyan evolution of Turkey: a plate tectonic approach.. Tectonophysics, 75, 181-241.
  • Tekin, U.K. Ural, M., Göncüoğlu, M. C. Arslan, M., & Kürüm, S. (2015). Upper Cretaceous Radiolarian ages from an arc–back-arc within the Yüksekova Complex in the southern Neotethys mélange, SE Turkey. Comptes Rendus Palevol, 14(2), 73-84.
  • Ural, M. (2012). Petrochemistry, petrology and age of the basic volcanites of the Yüksekova Complex around Elazığ and Malatya, Ph.D. thesis, Fırat University,174.
  • Ural, M., Göncüoğlu, M.C., Arslan, M., Tekin, U.K., & Kürüm, S. (2014). Petrological and paleontological evidence for generation of an arc-back arc system within the closing southern branch of Neotethys during the Late Cretaceous. Bull. Shk. Gjeol., Special Issue 2, 51-54.
  • Ural, M., Arslan, M., Göncüoğlu, M. C., Tekin, U. K. & Kürüm, S. (2015). Late Cretaceous arc and back-arc formation within the Southern Neotethys: whole-rock, trace element and Sr-Nd-Pb isotopic data from basaltic rocks of the Yüksekova Complex (Malatya-Elazığ, SE Turkey). Ofioliti, 40 (1).
  • Uysal, I., Kapsiotis A., Akmaz, M., Saka, S., & Seitz, M. (2018). The Guleman ophiolitic chromitites (SE Turkey) and their link to a compositionally evolving mantle source during subduction initiation. Ore Geology Reviews, 93, 98-113.
  • Winchester, J.A., & Floyd, P.A. (1977). Geochemical Discrimination of Different Magma Series and Their Differentiation Product Using Immobile Elements. Chemical Geology, 20, 325-343.
  • Yazgan, E. (1984). Geodynamic evolution of the eastern Taurus Region (Malatya-Elazıg area, Turkey). In: Tekeli, O., Göncüoğlu, M.C. (Eds.): Geology of the Taurus Belt. Proc. of Int. Sym., Publ. of Min. Res. and Expl. Inst. of Turkey, Ankara, 199-208.
  • Yılmaz, Y. (1993). New evidence and model evolution of the southeast anatolian orogen. Geological Society of America Bulletin, 105, 251-271.
  • Yılmaz, Y., Yiğitbaş, E., & Genç, S. (1993). Ophiolitic and metamorphic assemblages of southeast Anatolia and their significance in the geological evolution of the orogenic belt. Tectonics, 12(5), 1280-1297.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Melek Ural 0000-0002-4174-6058

Proje Numarası MF-17.16
Yayımlanma Tarihi 31 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Sayı: 17

Kaynak Göster

APA Ural, M. (2019). Güneyköy civarındaki (GD Elazığ, D Türkiye) Volkanik kayaçların (Yüksekova Karmaşığı) Jeokimyası. Avrupa Bilim Ve Teknoloji Dergisi(17), 1125-1133. https://doi.org/10.31590/ejosat.653983