Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Copper Doped TiO2 Photoanodes on Dye Sensitized Solar Cells Performance

Yıl 2020, Sayı: 18, 129 - 135, 15.04.2020
https://doi.org/10.31590/ejosat.672079

Öz

In this study, Cu doped TiO2 nanoparticles with different ratios are produced and are employed as semiconductor materials of photoanode to improve the photovoltaic performance of dye sensitized solar cells (DSSCs). X-ray difractometer (XRD), scanning electron microscope (SEM), and UV-vis spektrofotometre analiysis are used to characterize the influence of copper dopant with different concentrations on the TiO2 photoanodes. Also, the effect of dopant on photovoltaic performance of DSSCs were analyzed by current-voltage analysis systems. XRD and SEM analysis revealed that Cu ions settled in TiO2 structure. According to obtained photovoltaic results, the ideal Cu concentration of 1.0 at.%, the current density rised from 10.83 to 13.36 mA.cm-2, power conversion efficiencies increased from 4.59% up to 5.26% as compared to the bare DSSC. The significantly enhanced current density of the produced DSSCs was found to be related to the ideal Cu dopant amount and dye hold ability in Cu doped TiO2 photoanode. These results showed that the doping of ideal copper ratio in DSSCs an effective way to increase in the conversion efficiency of DSSCs.

Kaynakça

  • Akin, S., Acikgoz, S., Gulen, M., Akyurek, C., & Sonmezoglu, S. (2016). Investigation of the photoinduced electron ınjection processes for natural dye-sensitized solar cells: the ımpact of anchoring groups. RSC Advances, 6, 85125-85134.
  • Akin, S., Erol, E., & Sonmezoglu S. (2014). Enhancing the electron transfer and band potential tuning with long-term stability of zno based dye-sensitized solar cells by gallium and tellurium as dual-doping. Electrochimica Acta, 225, 243-254.
  • Akman, E. Akin S, Karanfil, G. & Sonmezoglu, S. (2013). Organik güneş pilleri. Trakya University Journal of Engineering Sciences, 14(1), 1-30.
  • Chahid, B. S., Santos, D. M., & Alcántara, R. (2019). Dye-sensitized cu-doped tio2 solar cells with a double flat. Springer Nature Switzerland, 940-946.
  • Li, R., Zhao, Y., Hou, R., Ren, X., Yuan, S., Lou, Y., Wang, Z., Li, D., & Shi, L. (2016). Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer. Journal of Photochemistry and Photobiology A: Chemistry, 319–320, 62-69.
  • Liu, Q. P. (2014). Analysis on dye-sensitized solar cells based on Fe-doped TiO2 by intensity-modulated photocurrent spectroscopy and Mott–Schottky. Chinese Chemical Letters, 25, 953-956.
  • Ozturk, T., Gulveren, B, Gulen, M., Akman, E., & Sonmezoglu, S. (2017). An insight into titania nanopowders modifying with manganese ions: A promising route for highly efficient and stable photoelectrochemical solar cells. Solar Energy, 157, 47-57.
  • Roose, B., Pathak, S., & Steiner, U. (2015). Doping of TiO2 for sensitized solar cells. Chemical Society Reviews, 44, 8326-8349. Shalan, A. E., & Rashad, M. M. (2013). Incorporation of Mn2+ and Co2+ to TiO2 nanoparticles and the performance of dye sensitized solar cell, Applied Surface Science, 283, 2013, 975-981.
  • Sahu, M., & Biswas, P. (2011). Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Research Letters, 6, 441-155.
  • Sonmezoglu, O. A., Akin, S., Terzi, B., Mutlu, S., & Sonmezoglu, S. (2016). An effective approach for high-efficiency photoelectrochemical solar cells by using bifunctional dna molecules modified photoanode. Advanced Functional Materials, 26, 8776–8783.
  • Sonmezoglu, S., Akyurek, C., & Akis, H. (2014). Modification of juglon dye as a sensitiser in dye-sensitised solar cells. IET Optoelectron, 8, 270-276.
  • Tang, J., Chen, X., Liu, Y., Gong, W., Peng, Z., Cai, T., Luo, L., & Denga, Q. (2013). Samarium-doped mesoporous TiO2 nanoparticles with improved photocatalytic performance for elimination of gaseous organic pollutants. Solid State Sciences, 15, 129-136.
  • Tang, X., Liu, X., Zhang, L., Xing, Y., & Tian, Y. (2014). Low crystallinity TiO2 film with inherent low oxygen vacancy for sensitized solar cells. Chemical Physics, 441, 121-127.
  • Tas, R., Can, M., & Sonmezoglu, S. (2017). Exploring on photovoltaic performance of dye-sensitized solar cells using polyaniline as a counter electrode: role of aluminum-solvent ınteractions. IEEE Journal Of Photovoltaiıcs, 7, 792-801.
  • Yao, N., Huang, J., Fu, K., Deng, X., Dinga, M., & Xu, X., (2016). Rare earth ion doped phosphors for dye-sensitized solar cells applications. RSC Advances, 6, 17546-17559.
  • Zalas, M,. & and Klein, M. (2012). The Influence of Titania Electrode Modification with lanthanide ions containing thin layer on the performance of dye-sensitized solar cells. International Journal of Photoenergy, 1-8.
  • Zhou, L., Wei, L., Yang, Y., Xia, X., Wang, P., Yu, J., & Luan, T. (2016). Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry. Chemical Physics, 475, 1-8.

Bakır Katkılı TiO2 Fotoanotların Boya Duyarlı Güneş Pilleri Performansı Üzerindeki Etkisi

Yıl 2020, Sayı: 18, 129 - 135, 15.04.2020
https://doi.org/10.31590/ejosat.672079

Öz

Bu çalışmada, farklı oranlarda (Cu) katkılı TiO2 nanoparçacıkları hazırlandı ve hazırlanan bu nanoparçacıklar boya duyarlı güneş pilleri (BDGP)’nde yarıiletken fotoanot olarak kullanıldı. Katkısı yapılan farklı oranlarda ki Cu iyonlarının TiO2 fotoanotları üzerindeki etkisini analiz etmek amacıyla X-ışını difraktometresi (XRD), taramalı elektron mikroskobu (SEM) ve UV-vis spektrofotometre analizleri kullanılmıştır. Ayrıca yapılan Cu katkısının BDGP performansı üzerindeki etkisini belirlemek için akım-gerilim analiz sistemleri kullanılmıştır. Yapılan XRD ve SEM analizlerinde Cu iyonlarının TiO2 yapısına yerleştiği anlaşılmıştır. Elde edilen fotovoltaik sonuçlara göre ise, saf TiO2 BDGP ile karşılaştırıldığında ideal katkı oranının % 1’lik Cu katkı oranı olduğu ve bu katkı oranı ile akım yoğunluğunun 10.83 mA.cm-2 değerinden 13.36 mA.cm-2 değerine yükseldiği, pillerin güç dönüşüm veriminin ise % 4.59 değerinden % 5.26 değerine ulaştığı saptanmıştır. Üretilen BDGP’inde akım yoğunluğunda ki kayda değer bu artış ideal Cu oranının katkısı ve Cu katkılı fotoanodun boyayı tutma kabiliyetini arttırması ile ilgilidir. Elde edilen bu sonuçlar BDGP’nde Cu iyonlarının ideal katkısı, üretilen pillerin verim değerini arttırma konusunda etkili bir yöntem olduğunu göstermektedir.

Kaynakça

  • Akin, S., Acikgoz, S., Gulen, M., Akyurek, C., & Sonmezoglu, S. (2016). Investigation of the photoinduced electron ınjection processes for natural dye-sensitized solar cells: the ımpact of anchoring groups. RSC Advances, 6, 85125-85134.
  • Akin, S., Erol, E., & Sonmezoglu S. (2014). Enhancing the electron transfer and band potential tuning with long-term stability of zno based dye-sensitized solar cells by gallium and tellurium as dual-doping. Electrochimica Acta, 225, 243-254.
  • Akman, E. Akin S, Karanfil, G. & Sonmezoglu, S. (2013). Organik güneş pilleri. Trakya University Journal of Engineering Sciences, 14(1), 1-30.
  • Chahid, B. S., Santos, D. M., & Alcántara, R. (2019). Dye-sensitized cu-doped tio2 solar cells with a double flat. Springer Nature Switzerland, 940-946.
  • Li, R., Zhao, Y., Hou, R., Ren, X., Yuan, S., Lou, Y., Wang, Z., Li, D., & Shi, L. (2016). Enhancement of power conversion efficiency of dye sensitized solar cells by modifying mesoporous TiO2 photoanode with Al-doped TiO2 layer. Journal of Photochemistry and Photobiology A: Chemistry, 319–320, 62-69.
  • Liu, Q. P. (2014). Analysis on dye-sensitized solar cells based on Fe-doped TiO2 by intensity-modulated photocurrent spectroscopy and Mott–Schottky. Chinese Chemical Letters, 25, 953-956.
  • Ozturk, T., Gulveren, B, Gulen, M., Akman, E., & Sonmezoglu, S. (2017). An insight into titania nanopowders modifying with manganese ions: A promising route for highly efficient and stable photoelectrochemical solar cells. Solar Energy, 157, 47-57.
  • Roose, B., Pathak, S., & Steiner, U. (2015). Doping of TiO2 for sensitized solar cells. Chemical Society Reviews, 44, 8326-8349. Shalan, A. E., & Rashad, M. M. (2013). Incorporation of Mn2+ and Co2+ to TiO2 nanoparticles and the performance of dye sensitized solar cell, Applied Surface Science, 283, 2013, 975-981.
  • Sahu, M., & Biswas, P. (2011). Single-step processing of copper-doped titania nanomaterials in a flame aerosol reactor, Nanoscale Research Letters, 6, 441-155.
  • Sonmezoglu, O. A., Akin, S., Terzi, B., Mutlu, S., & Sonmezoglu, S. (2016). An effective approach for high-efficiency photoelectrochemical solar cells by using bifunctional dna molecules modified photoanode. Advanced Functional Materials, 26, 8776–8783.
  • Sonmezoglu, S., Akyurek, C., & Akis, H. (2014). Modification of juglon dye as a sensitiser in dye-sensitised solar cells. IET Optoelectron, 8, 270-276.
  • Tang, J., Chen, X., Liu, Y., Gong, W., Peng, Z., Cai, T., Luo, L., & Denga, Q. (2013). Samarium-doped mesoporous TiO2 nanoparticles with improved photocatalytic performance for elimination of gaseous organic pollutants. Solid State Sciences, 15, 129-136.
  • Tang, X., Liu, X., Zhang, L., Xing, Y., & Tian, Y. (2014). Low crystallinity TiO2 film with inherent low oxygen vacancy for sensitized solar cells. Chemical Physics, 441, 121-127.
  • Tas, R., Can, M., & Sonmezoglu, S. (2017). Exploring on photovoltaic performance of dye-sensitized solar cells using polyaniline as a counter electrode: role of aluminum-solvent ınteractions. IEEE Journal Of Photovoltaiıcs, 7, 792-801.
  • Yao, N., Huang, J., Fu, K., Deng, X., Dinga, M., & Xu, X., (2016). Rare earth ion doped phosphors for dye-sensitized solar cells applications. RSC Advances, 6, 17546-17559.
  • Zalas, M,. & and Klein, M. (2012). The Influence of Titania Electrode Modification with lanthanide ions containing thin layer on the performance of dye-sensitized solar cells. International Journal of Photoenergy, 1-8.
  • Zhou, L., Wei, L., Yang, Y., Xia, X., Wang, P., Yu, J., & Luan, T. (2016). Improved performance of dye sensitized solar cells using Cu-doped TiO2 as photoanode materials: Band edge movement study by spectroelectrochemistry. Chemical Physics, 475, 1-8.
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Erdi Akman 0000-0002-2626-4050

Yayımlanma Tarihi 15 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 18

Kaynak Göster

APA Akman, E. (2020). Bakır Katkılı TiO2 Fotoanotların Boya Duyarlı Güneş Pilleri Performansı Üzerindeki Etkisi. Avrupa Bilim Ve Teknoloji Dergisi(18), 129-135. https://doi.org/10.31590/ejosat.672079