Yıl 2020, Cilt , Sayı 18, Sayfalar 283 - 289 2020-04-15

Entropy Generation and Exergy Destruction During and After Weaning from Mechanical Ventilation in Patients with Respiratory Failure
Solunum Yetmezliği Olan Hastalarda Mekanik Ventilasyon Sırasında ve Sonrasında Entropi Üretimi ve Ekserji Yıkımı

Jale ÇATAK [1] , Elif DEVELİ [2] , Serkan BAYRAM [3]


BACKGROUND: Mechanical ventilation is a useful supportive treatment for patients with respiratory failure who are not able to maintain the level of ventilation required to maintain the oxygenation and carbon dioxide elimination. Mechanical ventilation is often life-saving but it also has risks. Thermodynamic analyses are used to test the feasibility of processes leading to a better understanding of the systems overall performance. Energy losses (entropy) and the destruction of maximum useful work (exergy) leading to reduced respiratory work of breathing efficiency, can be calculated by thermodynamic analysis of the respiratory muscles. OBJECTIVE: To determine the entropy generation, exergy destruction and glucose consumption during and after weaning from mechanical ventilation in patients with respiratory failure by thermodynamic analysis. METHODS: In this study, a human respiratory system during and after weaning from mechanical ventilation was modelled thermodynamically using the first and second laws of thermodynamics. Work of breathing data is adapted from the literature. Mass and energy analyzes are carried out according to the 1st law of thermodynamics while entropy generation is calculated according to the 2nd law of thermodynamics which enables us to measure energy losses. In this thermodynamic model, the body temperature was considered at 37 °C, and surrounding air condition was taken at 25 °C. RESULTS: Exergy destructions during and after weaning from mechanical ventilation were calculated as 2.23x10-2 and 1.75x10-2 kJ/min, respectively. Entropy generation by the patients through the breathing cycle was 7.48x10-5 (kJ/K)/min during mechanical ventilation while 5.89x10-5 (kJ/K)/min after weaning from mechanical ventilation, respectively. The glucose consumed for work of breathing in patients during and after weaning from mechanical ventilation was calculated as 0.58-0.45 mmol/min, respectively. CONCLUSION: After weaning from mechanical ventilation, the patients have significantly decreased entropy generation, exergy destruction and glucose consumption indicating to the improvements in structure of respiratory mechanics and diaphragm perfusion. The reductions in entropy generation and exergy destruction after weaning from mechanical ventilation indicates also an increase in the mechanical efficiency of the respiratory muscles. According to the results of the energy balance analysis, the decrease in muscle energy requirement was determined and it was found by the calculations that the patient used 1.3 times more glucose during mechanical ventilation than after weaning from mechanical ventilation for work of breathing. In this study, thermodynamic approach was used to determine the benefit of mechanical ventilation. More powerful work and multidisciplinary data are needed to progress reliable procedures.
GİRİŞ: Mekanik ventilasyon, solunum yetmezliği olan ve oksijenasyon ile karbondioksit eliminasyonunu sürdürmek için gereken ventilasyon seviyesini koruyamayan hastalar için yararlı bir destekleyici tedavidir. Mekanik ventilasyon genellikle hayat kurtarıcıdır ancak riskleri de bulunmaktadır. Termodinamik analizler sistemlerin genel performansının daha iyi anlaşılmasını sağladığından, proseslerin uygulanabilirliğini test etmek için kullanılmaktadır. Solunum iş verimliliğinin azalmasına yol açan enerji kayıpları (entropi) ve maksimum yararlı iş (ekserji) yıkımı, solunum kaslarının termodinamik analizi ile hesaplanabilmektedir. AMAÇ: Solunum yetmezliği olan hastalarda mekanik ventilasyon sırasında ve mekanik ventilasyondan ayrılma sonrasında entropi üretimi, ekserji yıkımı ve glikoz tüketiminin termodinamik analiz ile belirlenmesidir. Bu çalışma ile, solunum yetmezliği olan hastalardaki hasarlı solunum mekaniği yapısının termodinamik olarak karakterize edilmesi ve solunum mekaniğindeki termodinamik değişikliklerin çözümlenmesi hedeflenmiştir. YÖNTEM: Bu çalışmada, insan solunum sistemi mekanik ventilasyon sırasında ve mekanik ventilasyondan ayrılma sonrasında termodinamiğin 1. ve 2. kanunları uygulanarak termodinamik olarak modellenmiştir. Hastaların mekanik ventilasyon sırasındaki ve sonrasındaki solunum iş yükü datası literatürden alınmıştır. Termodinamiğin 1. kanunu uygulanarak kütle ve enerji analizleri yapılırken, termodinamiğin 2. kanunu uygulanarak enerji kayıplarını ölçmemizi sağlayan entropi üretimi hesaplanmıştır. Bu termodinamik modelde vücut sıcaklığı 37 °C olarak kabul edilmiş ve çevre havası 25 °C olarak alınmıştır. BULGULAR: Ekserji yıkımı, mekanik ventilasyon sırasında ve sonrasında sırasıyla 2.23x10-2 kJ/min ve 1.75x10-2 kJ/min olarak hesaplanmıştır. Bir solunum döngüsü boyunca hastalar tarafından üretilen entropi miktarı ise mekanik ventilasyon sırasında 7.48x10-5 (kJ/K)/min iken mekanik ventilasyondan ayrıldıktan sonra 5.89x10-5 (kJ/K)/min olmuştur. Enerji analizi sonuçlarına göre solunum işi için harcanan glikoz miktarları, mekanik ventilasyon sırasında ve mekanik ventilasyondan ayrılma sonrasında sırasıyla 0.58-0.45 mmol/min olarak hesaplanmıştır. SONUÇ: Mekanik ventilasyondan ayrılma sonrasında hastalar; entropi üretimi, ekserji yıkımı ve glikoz tüketimini önemli ölçüde azaltmıştır ve bu da solunum mekaniği ve diyafram perfüzyonunun yapısındaki iyileşmelere işaret etmektedir. Mekanik ventilasyon sonrasında entropi üretimi ve ekserji yıkımındaki azalmalar aynı zamanda, solunum kaslarının mekanik verimliliğinde artış olduğunu da göstermektedir. Enerji dengesi analizlerinin sonuçlarına göre, kas enerji ihtiyacında azalma tespit edilmiştir ve solunum işi için hastanın mekanik ventilasyon sırasında, mekanik ventilasyon sonrasına göre 1.3 kat daha fazla glikoz kullandığı hesaplamalarla görülmüştür. Bu çalışmada, mekanik ventilasyonun yararının belirlenmesinde termodinamik yaklaşım kullanılmıştır. Güvenilir prosedürler geliştirebilmek için daha güçlü çalışmalara ve multidisipliner verilere ihtiyaç vardır.
  • [1] Chang, D.W. (2013). Clinical Application of Mechanical Ventilation. 4th ed. Cengage Learning.
  • [2] Takeda, S. I., Miyoshi, S., Maeda, H., Minami, M., Yoon, H. E., Tanaka, H., ... & Matsuda, H. (1999). Ventilatory muscle recruitment and work of breathing in patients with respiratory failure after thoracic surgery. European Journal of Cardio-Thoracic Surgery, 15(4), 449-455.
  • [3] Mancebo, J., Isabey, D., Lorino, H., Lofaso, F., Lemaire, F., & Brochard, L. (1995). Comparative effects of pressure support ventilation and intermittent positive pressure breathing (IPPB) in non-intubated healthy subjects. European Respiratory Journal, 8(11), 1901-1909.
  • [4] Henning, R. J., Shubin, H., & Weil, M. H. (1977). The measurement of the work of breathing for the clinical assessment of ventilator dependence. Critical Care Medicine, 5(6), 264-268.5. [5] Shikora, S. A., Bistrian, B. R., Borlase, B. C., Blackburn, G. L., Stone, M. D., & Benotti, P. N. (1990). Work of breathing: reliable predictor of weaning and extubation. Critical Care Medicine, 18(2), 157-162.
  • [6] Guyton, A., & Hall, J. (2011). In: Textbook of Medical Physiology, 12th edition, Elsevier Saunders, Philadelphia.
  • [7] Dincer, I., & Cengel, Y. A. (2001). Energy, entropy and exergy concepts and their roles in thermal engineering. Entropy, 3(3), 116-149.
  • [8] Neto, C. A., Pellegrini, L. F., Ferreira, M., de Oliveira Jr, S., & Yanagihara, J. (2010). Exergy analysis of human respiration under physical activity. International Journal of Thermodynamics, 13(3), 105-109.
  • [9] Mady, C. E. K., Ferreira, M. S., Yanagihara, J. I., Saldiva, P. H. N., & de Oliveira Junior, S. (2012). Modeling the exergy behavior of human body. Energy, 45(1), 546-553.
  • [10] Henriques, I., Mady, C., Neto, C. A., Yanagihara, J., & Junior, S. O. (2014). The effect of altitude and intensity of physical activity on the exergy efficiency of respiratory system. International Journal of Thermodynamics, 17(4), 265-273.
  • [11] Çatak, J., Develi, A. C., Sorguven, E., Özilgen, M., & İnal, H. S. (2015). Lifespan entropy generated by the masseter muscles during chewing: an indicator of the life expectancy?. International Journal of Exergy, 18(1), 46-67.
  • [12] Özilgen, M., & Öner, E.S. (2016). Biothermodynamics: Principles and Applications. 1st ed. CRC Press.
  • [13] Çatak, J., Özilgen, M., Olcay, A. B., & Yılmaz, B. (2018). Assessment of the work efficiency with exergy method in ageing muscles and healthy and enlarged hearts. International Journal of Exergy, 25(1), 1-33.
  • [14] Catak, J., Ozilgen, M., & Yilmaz, B. (2018). Thermodynamic analysis of human respiratory (diaphragm) skeletal muscles. In European Respiratory Journal (Vol. 52). Suppl. 62.
  • [15] Çatak, J. Kronik Obstrüktif Akciğer Hastaları ile Sağlıklı Bireylerin Solunum İş Yükünün Termodinamik Analizi. Avrupa Bilim ve Teknoloji Dergisi, (14), 145-151.
  • [16] Spanghero, G. M., Albuquerque, C., Lazzaretti Fernandes, T., Hernandez, A. J., Mady, K., & Eduardo, C. (2018). Exergy analysis of the musculoskeletal system efficiency during aerobic and anaerobic activities. Entropy, 20(2), 119.
  • [17] Martinez Garcia, M., Une, R. Y., de Oliveira Junior, S., Mady, K., & Eduardo, C. (2018). Exergy analysis and human body thermal comfort conditions: evaluation of different body compositions. Entropy, 20(4), 265: 1-17.
  • [18] Brandão Roll, J., Leone Borges, M., Mady, K., Eduardo, C., & de Oliveira Junior, S. (2019). Exergy Analysis of the Heart with a Stenosis in the Arterial Valve. Entropy, 21(6), 563.
  • [19] Dutta, A., Chattopadhyay, H., Yasmin, H., & Rahimi-Gorji, M. (2019). Entropy generation in the human lung due to effect of psychrometric condition and friction in the respiratory tract. Computer Methods and Programs in Biomedicine, 180, 105010.
  • [20] Smith, N. P., Barclay, C. J., & Loiselle, D. S. (2005). The efficiency of muscle contraction. Progress in biophysics and molecular biology, 88(1), 1-58.
  • [21] Huxley, A.F. (1957). Muscle structure and theories of contraction. Progress in Biophysics and Biophysical Chemistry. 7: 255-318.
  • [22] Hill, A. V. (1938). The heat of shortening and the dynamic constants of muscle. Proceedings of the Royal Society of London. Series B-Biological Sciences, 126(843), 136-195.
  • [23] Jubrias, S. A., Vollestad, N. K., Gronka, R. K., & Kushmerick, M. J. (2008). Contraction coupling efficiency of human first dorsal interosseous muscle. The Journal of physiology, 586(7), 1993-2002.
  • [24] Çatak, J., Develi, E., & Bayram, S. (2019). Comparison the work of breathing between healthy and obese by thermodynamic analysis. European Respiratory Journal 2019; 54: Suppl. 63.
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-2718-0967
Yazar: Jale ÇATAK (Sorumlu Yazar)
Kurum: İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-6140-3319
Yazar: Elif DEVELİ
Kurum: YEDİTEPE ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0001-7651-1200
Yazar: Serkan BAYRAM
Kurum: Süreyyapaşa Göğüs Hastalıkları ve Göğüs Cerrahisi Eğitim ve Araştırma Hastanesi
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 15 Nisan 2020

APA ÇATAK, J , DEVELİ, E , BAYRAM, S . (2020). Entropy Generation and Exergy Destruction During and After Weaning from Mechanical Ventilation in Patients with Respiratory Failure. Avrupa Bilim ve Teknoloji Dergisi , (18) , 283-289 . DOI: 10.31590/ejosat.690568