Yıl 2020, Cilt , Sayı 18, Sayfalar 531 - 544 2020-04-15

Lithium-boro-tellurite glasses with ZnO additive: Exposure Buildup Factors (EBF) and Nuclear Shielding Properties

Gülfem SÜSOY DOĞAN [1]


The effect of ZnO increment on lithium boro tellurite (Li2O-B2O3-P2O5-ZnO) glass structure was investigated with the study of gamma and neutron attenuation properties. The gamma-ray shielding effectiveness of materials can be understood with the help of several different shielding parameters that play an important role in understanding the shielding capacities of the material. The mass attenuation coefficients (µ/ρ) for Li2O-B2O3-P2O5-ZnO glass samples were calculated by using the XCOM program based on the DOS-based compilation XCOM. To compare the theoretical and simulation results of the mass attenuation coefficients of the samples, MCNPX (Monte Carlo N-Particle) simulation code was handled with the XCOM program in the energy range of 0.02 MeV - 20 MeV. In addition, effective atomic numbers (Zeff), electron densities (Nel), effective removal cross-section (ƩR) and the transmission factor (TF) for sample glasses, have also been examined in that energy range. In addition to these parameters the Half-value layer (HVL), tenth value layer (TVL) and also mean free path (MFP) values were calculated by using the µ/ρ. Moreover, exposure buildup factors (EBF) was calculated at 0.015–15 MeV up to 15 mfp by utilizing the G-P fitting approach. The glass having 20 mol% ZnO was found to has better gamma-ray shielding properties among the investigated glass samples. As a result, sample ZL5 among studied glasses has marvelous attenuation effectiveness whereas sample ZL1 has the best neutron radiation shielding performance. The outcomes of the present extended research can provide significant information for the comparison of new generation shielding materials with conventional shielding materials used in ionizing radiation facilities.
ZnO, Gamma Shielding, EBF, Neutron Shielding, MCNPX
  • 1. R. A. H. El-Mallawany, Tellurite Glasses Handbook Physical Properties and Data. Boca Raton: CRC Press, (2002).
  • 2. P. Kostka, J. Zavadil, J. Pedlikoval, M. Poulain, Preparation and Optical Characterization of PbCl2-Sb2O3-TeO2 Glasses Doped with Rare Earth Elements, Phys. Status Solidi A, 208, 821-1826, (2011).
  • 3. I. M. Ashraf, S. Almoeed, E. Yousef, Enhanced thermal stability and optical properties in Tm3+/Dy3+ ions codoped TNbZ glasses. Optik, 131, 221-230, (2017).
  • 4. M. Çelikbilek, A. E. Ersundu E. O. Zayim, and S. Aydın, Thermochromic behavior of tellurite glasses. Journal of Alloys and Compounds, 637, 162-170, (2015).
  • 5. R. A. H. El-Mallawany, Tellurite Glasses Handbook Physical Properties and Data. Boca Raton: CRC Press, (2002).
  • 6. S. Terny, M. A. De la Rubia, J. De Frutos, M. A. Frecheroa, A new transition metal-tellurite glass family: Electrical and structural properties. Journal of Non-Crystalline Solids, 433, 68-74, (2016).
  • 7. P. Gayathri Pavani, K. Sadhana, V. Chandra Mouli, Optical, physical and structural studies of boro-zinc tellurite glasses, Physica B 406, 1242–1247, doi: 10.1016/j.physb.2011.01.006 (2011).
  • 8. S. L. Meena, B. Bhatia, Polarizability and Optical Basicity of Er3+ Ions Doped Zinc Lithium Bismuth Borate Glasses J. Pure Appl. Ind. Phys. 6 (10), 75–83, (2016).
  • 9. S. Thirumaran, K. Sathish, Spectroscopic investigations on structural characterization of borate glass specimen doped with transition metal ions, Res. J. Chem. Environ. 18 (10), 77–82, (2015).
  • 10. K.A. Matori, M. Hafiz, M. Zaid, H.J. Quah, S. Hj, A. Aziz, Studying the Effect of ZnO on Physical and Elastic Properties of (ZnO)x(P2O5)1−x Glasses Using Nondestructive Ultrasonic Method, Adv. Mater. Sci. Eng., 596361, , https://doi.org/10.1155/2015/596361, (2015).
  • 11. D. Dutta, M. P. F. Graca, M. A. Valente and S. K. Mendiratta, Structural characteristics and dielectric response of some zinc tellurite glasses and glass ceramics, Solid State Ionics 230 66, (2013).
  • 12. E. A. Mohamed, F. Ahmad and K. A. Aly, Effect of lithium addition on thermal and optical properties of zinc–tellurite glass, J. Alloys Compd. 538 230, doi.org/10.1016/j.jallcom.2012.05.044. (2012).
  • 13. Y. B. Saddeek, H. A. Afifi and N. S. A. El-Aal, Interpretation of mechanical properties and structure of TeO2–Li2O–B2O3 glasses, Phys. B 398 1, doi.:10.1016/j.physb.2007.04.011 (2007).
  • 14. P. Mosner, K. Vosejpkova, L. Koudelka, L. Montagne and B. Revel, Structure and properties of ZnO–B2O3–P2O5–TeO2 glasses, Mater. Chem. Phys. 124 732, doi:10.1016/j.matchemphys.2010.07.048. (2010).
  • 15. Ghada El. Falaky, W. Guirguis Osiris, Effect of zinc on the physical properties of borate glasses, J. Non-Cryst. Solids 358,1746–1752, DOI: 10.1016/j.jnoncrysol.2012.05.009.(2012).
  • 16. Y.B. Saddeek, K.A. Aly, K.S. Shaaban, Atif Mossad Ali, Moteb M. Alqhtani, Ali M. Alshehri, M.A. Sayed, E.A. Abdel Wahab, Physical properties of B2O3–TeO2–Bi2O3glass system, J. Non-Cryst. Solids 498, 82–88, (2018).
  • 17. Y. Saddeek, H. Mohamed, M. Azzoz, Structural study of some divalent aluminoborate glasses using ultrasonic and positron annihilation techniques, Phys. Status Solidi A 201 (9), 2053, (2004).
  • 18. G. Lakshminarayana, S.O. Baki, M.I. Sayyed, M.G. Dong, A. Lira, A.S.M. Noor, I.V. Kityk, M.A. Mahdi, Vibrational, thermal features, and photon attenuation coefficients evaluation for TeO2-B2O3-BaO-ZnO-Na2O-Er2O3-Pr6O11 glasses as gamma-rays shielding materials, J. Non-Cryst. Solids 481, 568–578, (2018).
  • 19. N. Elkhoshkhany, Samir Y. Marzouk, Nourhan Moataz, Sherif H. Kandil, Structural and optical properties of TeO2-Li2O-ZnO-Nb2O5-Er2O3 glass system, J. Non- Cryst. Solids 500, 289–301, (2018).
  • 20. S. Rani, N. Ahlawat, R. Parmar, S. Dhankhar, R.S. Kundu, Role of lithium ions on the physical, structural and optical properties of zinc boro tellurite glasses, Indian J. Phy. 92 (7), 901–909, (2018).
  • 21. M.G. Dong, M.I. Sayyed, G. Lakshminarayan, M. Çelikbilek Ersundu, A.E. Ersundu, Priyanka Nayar, M.A. Mahdi, Investigation of gamma radiation shielding properties of lithium zinc bismuth borate glasses using XCOM program and MCNP5 code, Journal of Non-Crystalline Solids, 468, 12–16, (2017).
  • 22. P. Naresh, B. Kavitha, Hajeebaba K. Inamdar, D. Sreenivasu, N. Narsimlu, Ch. Srinivas, Vasant Sathe, K. Siva Kumar, Modifier role of ZnO on the structural and transport properties of lithium boro tellurite glasses, Journal of Non-Crystalline Solids 514, 35–45, (2019).
  • 23. Team, X.-5 M.C.: MCNP, A General Monte Carlo N-Particle Transport Code, Version 5 Volume I: Overview and Theory. (2003) p.
  • 24. H.O. Tekin., MCNP-X Monte Carlo Code Application for Mass Attenuation Coefficients of Concrete at Different Energies by Modeling 3 × 3 inch NaI(Tl) Detector and Comparison with XCOM and Monte Carlo Data, Science and Technology of Nuclear Installations, Article ID 6547318, 7 pages. doi: https://doi.org/10.1155/2016/6547318, (2016)
  • 25. M. J. Berger, J. H. Hubbell, S. M. Seltzer, J. Chang, J. S. Coursey, R. Sukumar, D. S. Zucker, K. Olsen, XCOM: Photon Cross Sections Database, NIST Standard Reference Database 8 (XGAM).
  • 26. O. Agar, M.I. Sayyed, F. Akman, H.O. Tekin, M.R. Kacal. An extensive investigation on gamma ray shielding features of Pd/Ag-based alloys. Nuclear Engineering and Technology, 51(3), 853-859. doi.:10.1016/j.net.2018.12.014. (2018).
  • 27. M.I. Sayyed, Bismuth modified shielding properties of zinc boro-tellurite glasses, J. Alloy. Compd. 688, 111–117. doi:/10.1016/j.jallcom.2016.07.153.(2016).
  • 28. F. Akman, M. I. Sayyed, M. R. Kaçal, H. O. Tekin, Investigation of photon shielding performances of some selected alloys by experimental data, theoretical and MCNPX code in the energy range of 81 keV–1333 keV. J. Alloys Compd. DOI: 10.1016/j.jallcom.2018.09.177. (2019).
  • 29. H. O. Tekin, O. Kilicoglu, E. Kavaz, E. E. Altunsoy, M. Almatari, O. Agar, M. I. Sayyed, The investigation of gamma-ray and neutron shielding parameters of Na2O-CaO-P2O5-SiO2 bioactive glasses using MCNPX code. Results Phys. 12, 1797, 1797-1804 doi.:10.1016/j.rinp.2019.02.017. (2019).
  • 30. F. Akman, I. H. Geçibesler, I. Demirkol, A. Çetin, Determination of effective atomic numbers and electron densities for some synthesized triazoles from the measured total mass attenuation coefficients at different energies. Can. J. Phys. 97(1): 86-92, doi.:10.1139/cjp-2017-0923 (2018).
  • 31. G. J. Hine, The effective atomic numbers of materials for various gamma ray interactions, Phys. Rev. 1952, 85, 725.
  • 32. F. Akman, R. Durak, M. F. Turhan, M. R. Kaçal, Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds. Appl. Radiat. Isot. doi.:10.1016/j.apradiso.2015.04.001. (2015).
  • 33. H. O. Tekin, E. E. Altunsoy, E. Kavaz, M. I. Sayyed, O. Agar, M. Kamislioglu, Photon and neutron shielding performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457, doi.:/10.1016/j.rinp.2019.01.060. (2019).
  • 34. S. R.Manohara, S.M. Hanagodimath, and L. Gerward, Energy dependence of effective atomic numbers for photon energy absorption and photon interaction: studies of some biological molecules in the energy range 1 keV-20 MeV, Medical Physics, vol. 35, no. 1, pp. 388–402, DOI: 10.1118/1.2815936. (2008).
  • 35. J. F. Ziegler, M. Ziegler, J. Biersack, SRIM – The stopping and range of ions in matter (2010), Nuclear Instruments and Methods in Physics Research Section B 268 (11–12), 1818–1823. doi: 10.1016/j.nimb.2010.02.091. (2010).
  • 36. Y. Harima, An approximation of gamma-ray buildup factors by modified geometrical progression, Nucl. Sci. Eng., 83, pp. 299-309, doi.org/10.13182/NSE83-A18222 (1983).
  • 37. M. I. Sayyed, M. G. Dong, H. O. Tekin, G. Lakshminarayana, M. A. Mahdi, Comparative investigations of gamma and neutron radiation shielding parameters for different borate and tellurite glass systems using WinXCom program and MCNPX code, Mater. Chem. Phys., 215, pp. 183-202, doi.org/10.1016/j.matchemphys.2018.04.106 (2018).
  • 38. S. R. Manohara, S. M. Hanagodimath, L. Gerward, Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence, Radiat. Phys. Chem., 79, pp. 575-582, doi.org/10.1016/j.radphyschem.2010.01.002 (2010).
  • 39. ANSI/ANS-6.4.3, Gamma Ray Attenuation Coefficient and Buildup Factors for Engineering Materials, Am. Nucl. Soc. La Grange (1991).
  • 40. O. Kilicoglu, Characterization of copper oxide and cobalt oxide substituted bioactive glasses for gamma and neutron shielding applications, Ceramics International, 45 (17), 23619-23631, doi.org/10.1016/j.ceramint.2019.08.073. (2019).
  • 41. S.A. Issa, H.O. Tekin, R. Elsaman, O. Kilicoglu, Y.B. Saddeek, M.I. Sayyed, Radiation shielding and mechanical properties of Al2O3-Na2O-B2O3-Bi2O3 glasses using MCNPX Monte Carlo code, Materials Chemistry and Physics. 223, 209–219. doi.:10.1016/j.matchemphys.2018.10.064, (2019).
  • 42. I.S. Mahmoud, S.A. Issa, Y.B. Saddeek, H.O. Tekin, O. Kilicoglu, T. Alharbi, M.I. Sayyed, T.T. Erguzel, R. Elsaman, Gamma, neutron shielding and mechanical parameters for lead vanadate glasses, Ceramics International. 45, 14058–14072. doi: 10.1016/j.ceramint.2019.04.105. (2019).
  • 43. H.O. Tekin, E. Kavaz, E.E. Altunsoy, O. Kilicoglu, O. Agar, T.T. Erguzel, M.I. Sayyed, An extensive investigation on gamma-ray and neutron attenuation parameters of cobalt oxide and nickel oxide substituted bioactive glasses, Ceramics International. 45, 9934–9949. doi:10.1016/j.ceramint.2019.02.036. (2019).
  • 44. G. Susoy, Effect of TeO2 additions on nuclear radiation shielding behavior of Li2O–B2O3–P2O5–TeO2 glass-system, Ceramics International, 46 (3), 3844-3854, doi:10.1016/j.ceramint.2019.10.108. (2019).
Birincil Dil en
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0002-3760-1999
Yazar: Gülfem SÜSOY DOĞAN (Sorumlu Yazar)
Kurum: İSTANBUL ÜNİVERSİTESİ, FEN FAKÜLTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 15 Nisan 2020

APA SÜSOY DOĞAN, G . (2020). Lithium-boro-tellurite glasses with ZnO additive: Exposure Buildup Factors (EBF) and Nuclear Shielding Properties. Avrupa Bilim ve Teknoloji Dergisi , (18) , 531-544 . DOI: 10.31590/ejosat.697254