Araştırma Makalesi
BibTex RIS Kaynak Göster

Yüksek Güç Transformatörlerindeki Kısmi Deşarj Tespitinde Diyafram Tabanlı Fabry-Perot İnterferometrik Basınç Sensörlerinin Performans İyileştirilmesi için Diyafram Analizi

Yıl 2020, Ejosat Özel Sayı 2020 (ARACONF), 231 - 238, 01.04.2020
https://doi.org/10.31590/ejosat.araconf29

Öz

Bu çalışmada, yüksek güç transformatörlerinde oluşan kısmi deşarjın (partial discharge, PD) tespiti için diyafram tabanlı Fabry-Perot interferometrik fiber optik basınç sensör (DTFP-FOBS) için boyutlarının küçültülerek algılama parametrelerinin (frekans, hassasiyet) optimizasyonu araştırılmıştır. DTFP-FOBS’ların boyutları ve algılama parametreleri sensörde kullanılan diyafram tarafından belirlenir. Diyaframın yapıldığı malzeme, yarıçap ve kalınlık bu parametreleri belirleyen faktörlerdir. PD algılamak için DTFP-FOBS’larda büyük bir çoğunlukla diyafram malzemesi olarak silikadan (SiO2) faydalanılmaktadır. Fakat, SiO2 diyaframın yarıçapının literatürde belirlenmiş olan değerlerden daha küçük seçilmesi sensörün rezonans frekansının (900 kHz-3 MHz) çok yükselmesine ve PD algılama bandı (20 kHz-200 kHz) dışına çıkmasına sebep olmaktadır. Ayrıca, çapı küçülmüş olan sensörün hassasiyetliği de azalmaktadır. Bu dezavantajların ortadan kaldırılması için alternatif bir polimer diyafram olarak selüloz triasetat (cellulose triacetate, CTA) önerilmiştir. Bu amaç ile her iki diyaframın farklı yarıçap ve kalınlıklarda sonlu elemanlar yöntemi ile yapılan benzetim çalışmaları sayesinde sensör hassasiyeti ve rezonans frekans parametreleri karşılaştırılmıştır. Elde edilen benzetim sonuçları ışığında CTA diyaframın 20 µm kalınlıkta 225 µm yarıçapta rezonans frekansı 197 kHz olarak hesaplanırken, SiO2’nın bu frekans değerine ulaşabildiği en küçük yarıçap değeri 530 µm olarak belirlenmiştir. Bu geometrik boyutlarda CTA’dan yapılmış olan diyaframın boyutu daha düşük olmasına rağmen hassasiyeti 2 katına çıkmıştır. Sonuç olarak, PD uygulaması özelinde DTFP-FOBS’larda, CTA’nın diyafram malzemesi olarak kullanılmasının, SiO2 diyaframa göre sensor boyutlarının %66 oranında küçültülebileceği görülmüştür.

Destekleyen Kurum

Kırşehir Ahi Evran Üniversitesi Bilimsel Araştırma Projeleri Birimi

Proje Numarası

KMY.A4.19.001

Teşekkür

Yazarlar, Erciyes Üniversitesi Klinik Mühendisliği Araştırma ve Uygulama Merkezi’ne, araştırma faaliyetlerine destekleri için teşekkür eder. Ayrıca, bu çalışma Kırşehir Ahi Evran Üniversitesi Bilimsel Araştırma Projeleri birimince KMY.A4.19.001 proje numarası ile desteklenmiştir.

Kaynakça

  • American National Standard. (2007) IEEE guide for the detection and location of acoustic emissions from partial discharges in oil-immersed power transformers and reactors, in IEEE Power Engineering Society. IEEE Std C57. 127-2007, pp. 9–18, Transformers Committee, New York, USA.
  • Dong, B. Han, M. & Wang, A. (2012) Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors. Proc. SPIE 8370, Fiber Optic Sensors and Applications IX, 83700K.
  • Hayber, Ş.E. Aydemir, U. Tabaru, T.E. & Saraçoğlu, Ö.G. (2019) The Experimental Validation of Designed Fiber Optic Pressure Sensors With EPDM Diaphragm. IEEE Sensors Journal, 19(14), 5680-5685.
  • Hayber, Ş.E. Tabaru, T.E. & Saraçoğlu, Ö.G. A novel approach based on simulation of tunable MEMS diaphragm for extrinsic Fabry–Perot sensors. Optics Communications, 430, 14-23.
  • Hayber, Ş.E. Tabaru, T.E. Keser, S. & Saraçoğlu, Ö.G. (2018) A Simple, High Sensitive Fiber Optic Microphone Based on Cellulose Triacetate Diaphragm. Journal of Lightwave Technology, 36(23), 5650-5655.
  • Huang, Y. W. Tao, J. & Huang, X. G. (2016) Research progress on FP interference-based fiber-optic sensors. Sensors, 16(9), 1424.
  • Islam, M. Ali, M.M. Lai, M.H. Lim, K.S. & Ahmad, H. (2014) Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review. Sensors, 14(4), 7451-7488.
  • Li, H. Li, D. Xiong, C. Si, W. Fu, C. Yuan, P. & Yu, Y. (2019) Low-cost, high-performance fiber optic Fabry–Perot sensor for ultrasonic wave detection. Sensors 19(2), 406.
  • Liu, B. Lin, J. Wang, J. Ye, C. & Jin, P. (2015) MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45° angled fiber. IEEE Photonics Technology Letters, 28(5) 581-584, 2015.
  • Lundgaard, L. E. (1992) Partial discharge. XIII. Acoustic partial discharge detection-fundamental considerations. IEEE Electrical Insulation Magazine 8(4), 25-31.
  • Lundgaard, L.E. (1992) Partial discharge. XIII. Acoustic partial discharge detection-fundamental considerations. IEEE Electrical Insulation Magazine, 8(4), pp. 25-31.
  • Ma, J. (2014) Miniature Fiber-Tip Fabry–Perot Interferometric Sensors for Pressure and Acoustic Detection (Doctoral thesis). The Hong Kong Polytechnic University.
  • Ma, J. Xuan, H. Ho, H.L. Jin, W. Yang, Y. & Fan, S. (2013) Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technology Letters, 2(10), 932-935.
  • Pang, C. Bae, H. Gupta, A. Bryden, K. & Yu, M. (2013) MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing. Optics Express, 21(19), 21829-21839.
  • Qingxu, Y. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sensors, 1(1), 72-83.
  • Stone, C.G. (2005) Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Transactions on Dielectrics and Electrical Insulation 12(5), 891-904.
  • Sun, B. Wang, Y. Qu, J. Liao, C. Yin, G. He, J. & Liu, Y. (2015) Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet. Optics Express, 23(3), 1906-1911.
  • Wang, S. Lu, P. Liu, L. Liao, H. Sun, Y. Ni, W.& Xu, H. (2016) An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure. IEEE Photonics Technology Letters, 28(11), 1264-1267.
  • Wang, X. Li, B. Xiao, Z. Lee, S.H. Roman, H. Russo, O. L. & Farmer, K.R. (2004) An ultra-sensitive optical MEMS sensor for partial discharge detection. Journal of micromechanics and microengineering, 15(3), 521.
  • Wang, X. Xu, J. Zhu, Y. Cooper, K.L. & Wang, A. (2006) All-fused-silica miniature optical fiber tip pressure sensor. Optics letters, 31(7), 885-887.
  • Wang, X. Xu, J. Zhu, Y. Yu, B. Han, M. Wang, Z. & Ng, W. (2005) Verifying an all fused silica miniature optical fiber tip pressure sensor performance with turbine engine field test. Proc. SPIE 5998, Sensors for Harsh Environments II, 59980L, 2005.
  • Wu, Y. Yu, C. Wu, F. Li, C. Zhou, J. Gong, Y. & Chen, Y. (2017) A highly sensitive fiber-optic microphone based on graphene oxide membrane. Journal of Lightwave Technology, 35(19), 4344-4349.
  • Xu, F. Ren, D. Shi, X. Li, C. Lu, W. Lu, L. & Yu, B. (2012). High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm. Optics letters, 37(2), 133-135.
  • Xu, F. Shi, J.K. Li, Gong, H. Hui, R. & Yu, B. (2014) Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. Optics letters, 39(10), 2838-2840.
  • Yu, B. Kim, D.W. Deng, J. Xiao, H. & Wang, A. (2003) Fiber Fabry-Perot sensors for detection of partial discharges in power transformers. Applied Optics, 42(16), 3241-3250.
  • Zhao, Y. Chen, M.Q. Xia, F. & Lv, R.Q. (2018) Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber. Sensors and Actuators A: Physical, 270, 162-169.

Diaphragm Analysis for Performance Improvement of Diaphragm Based Fabry-Perot Interferometric Pressure Sensors in Partial Discharge Detection in High Power Transformers

Yıl 2020, Ejosat Özel Sayı 2020 (ARACONF), 231 - 238, 01.04.2020
https://doi.org/10.31590/ejosat.araconf29

Öz

In this study, the optimization of sensing parameters (frequency, sensitivity) was investigated for the diaphragm-based Fabry-Perot interferometric fiber optic pressure sensor (DTFP-FOBS) for detection of partial discharge (partial discharge, PD) formed in high power transformers. The dimensions and detection parameters of the DTFP-FOBS are determined by the diaphragm used in the sensor. The radius and thickness values of the diaphragm used in determining the sensor dimensions are the most effective parameters. In order to detect PD, DTFP-FOBS mostly use silica (SiO2) as diaphragm material. However, the reduction of the radius of the SiO2 diaphragm ensures the resonance frequency (900 kHz-3 MHz) of the sensor to rise too high and goes out of the PD detection band (20 kHz-200 kHz). In addition, the sensitivity of the sensor, whose diameter is reduced, decreases. To eliminate these disadvantages, cellulose triacetate (cellulose triacetate, CTA) has been proposed as an alternative polymer diaphragm. For this purpose, sensor sensitivity and resonance frequency parameters were compared thanks to simulation studies of both diaphragms with different radii and thicknesses using the finite element method. In the light of the simulation results obtained, the fundamental frequency of the CTA diaphragm was calculated as 197 kHz at the radius of 225 µm and the thickness of 20 µm, while the smallest radius value at which SiO2 could reach this frequency was determined as 530 µm. Although the diaphragm made of CTA in these geometric dimensions is smaller in size, its sensitivity has doubled. As a result, it has been observed that the use of CTA as a diaphragm material in DTFP-FOBS specifically for PD application, sensor dimensions can be reduced by 66% compared to SiO2 diaphragm.

Proje Numarası

KMY.A4.19.001

Kaynakça

  • American National Standard. (2007) IEEE guide for the detection and location of acoustic emissions from partial discharges in oil-immersed power transformers and reactors, in IEEE Power Engineering Society. IEEE Std C57. 127-2007, pp. 9–18, Transformers Committee, New York, USA.
  • Dong, B. Han, M. & Wang, A. (2012) Two-wavelength quadrature multipoint detection of partial discharge in power transformers using fiber Fabry-Perot acoustic sensors. Proc. SPIE 8370, Fiber Optic Sensors and Applications IX, 83700K.
  • Hayber, Ş.E. Aydemir, U. Tabaru, T.E. & Saraçoğlu, Ö.G. (2019) The Experimental Validation of Designed Fiber Optic Pressure Sensors With EPDM Diaphragm. IEEE Sensors Journal, 19(14), 5680-5685.
  • Hayber, Ş.E. Tabaru, T.E. & Saraçoğlu, Ö.G. A novel approach based on simulation of tunable MEMS diaphragm for extrinsic Fabry–Perot sensors. Optics Communications, 430, 14-23.
  • Hayber, Ş.E. Tabaru, T.E. Keser, S. & Saraçoğlu, Ö.G. (2018) A Simple, High Sensitive Fiber Optic Microphone Based on Cellulose Triacetate Diaphragm. Journal of Lightwave Technology, 36(23), 5650-5655.
  • Huang, Y. W. Tao, J. & Huang, X. G. (2016) Research progress on FP interference-based fiber-optic sensors. Sensors, 16(9), 1424.
  • Islam, M. Ali, M.M. Lai, M.H. Lim, K.S. & Ahmad, H. (2014) Chronology of Fabry-Perot interferometer fiber-optic sensors and their applications: a review. Sensors, 14(4), 7451-7488.
  • Li, H. Li, D. Xiong, C. Si, W. Fu, C. Yuan, P. & Yu, Y. (2019) Low-cost, high-performance fiber optic Fabry–Perot sensor for ultrasonic wave detection. Sensors 19(2), 406.
  • Liu, B. Lin, J. Wang, J. Ye, C. & Jin, P. (2015) MEMS-based high-sensitivity Fabry–Perot acoustic sensor with a 45° angled fiber. IEEE Photonics Technology Letters, 28(5) 581-584, 2015.
  • Lundgaard, L. E. (1992) Partial discharge. XIII. Acoustic partial discharge detection-fundamental considerations. IEEE Electrical Insulation Magazine 8(4), 25-31.
  • Lundgaard, L.E. (1992) Partial discharge. XIII. Acoustic partial discharge detection-fundamental considerations. IEEE Electrical Insulation Magazine, 8(4), pp. 25-31.
  • Ma, J. (2014) Miniature Fiber-Tip Fabry–Perot Interferometric Sensors for Pressure and Acoustic Detection (Doctoral thesis). The Hong Kong Polytechnic University.
  • Ma, J. Xuan, H. Ho, H.L. Jin, W. Yang, Y. & Fan, S. (2013) Fiber-optic Fabry–Pérot acoustic sensor with multilayer graphene diaphragm. IEEE Photonics Technology Letters, 2(10), 932-935.
  • Pang, C. Bae, H. Gupta, A. Bryden, K. & Yu, M. (2013) MEMS Fabry-Perot sensor interrogated by optical system-on-a-chip for simultaneous pressure and temperature sensing. Optics Express, 21(19), 21829-21839.
  • Qingxu, Y. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sensors, 1(1), 72-83.
  • Stone, C.G. (2005) Partial discharge diagnostics and electrical equipment insulation condition assessment. IEEE Transactions on Dielectrics and Electrical Insulation 12(5), 891-904.
  • Sun, B. Wang, Y. Qu, J. Liao, C. Yin, G. He, J. & Liu, Y. (2015) Simultaneous measurement of pressure and temperature by employing Fabry-Perot interferometer based on pendant polymer droplet. Optics Express, 23(3), 1906-1911.
  • Wang, S. Lu, P. Liu, L. Liao, H. Sun, Y. Ni, W.& Xu, H. (2016) An infrasound sensor based on extrinsic fiber-optic Fabry–Perot interferometer structure. IEEE Photonics Technology Letters, 28(11), 1264-1267.
  • Wang, X. Li, B. Xiao, Z. Lee, S.H. Roman, H. Russo, O. L. & Farmer, K.R. (2004) An ultra-sensitive optical MEMS sensor for partial discharge detection. Journal of micromechanics and microengineering, 15(3), 521.
  • Wang, X. Xu, J. Zhu, Y. Cooper, K.L. & Wang, A. (2006) All-fused-silica miniature optical fiber tip pressure sensor. Optics letters, 31(7), 885-887.
  • Wang, X. Xu, J. Zhu, Y. Yu, B. Han, M. Wang, Z. & Ng, W. (2005) Verifying an all fused silica miniature optical fiber tip pressure sensor performance with turbine engine field test. Proc. SPIE 5998, Sensors for Harsh Environments II, 59980L, 2005.
  • Wu, Y. Yu, C. Wu, F. Li, C. Zhou, J. Gong, Y. & Chen, Y. (2017) A highly sensitive fiber-optic microphone based on graphene oxide membrane. Journal of Lightwave Technology, 35(19), 4344-4349.
  • Xu, F. Ren, D. Shi, X. Li, C. Lu, W. Lu, L. & Yu, B. (2012). High-sensitivity Fabry–Perot interferometric pressure sensor based on a nanothick silver diaphragm. Optics letters, 37(2), 133-135.
  • Xu, F. Shi, J.K. Li, Gong, H. Hui, R. & Yu, B. (2014) Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm. Optics letters, 39(10), 2838-2840.
  • Yu, B. Kim, D.W. Deng, J. Xiao, H. & Wang, A. (2003) Fiber Fabry-Perot sensors for detection of partial discharges in power transformers. Applied Optics, 42(16), 3241-3250.
  • Zhao, Y. Chen, M.Q. Xia, F. & Lv, R.Q. (2018) Small in-fiber Fabry-Perot low-frequency acoustic pressure sensor with PDMS diaphragm embedded in hollow-core fiber. Sensors and Actuators A: Physical, 270, 162-169.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Timuçin Emre Tabaru Bu kişi benim 0000-0002-1373-3620

Şekip Esat Hayber 0000-0003-0062-3817

Proje Numarası KMY.A4.19.001
Yayımlanma Tarihi 1 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Ejosat Özel Sayı 2020 (ARACONF)

Kaynak Göster

APA Tabaru, T. E., & Hayber, Ş. E. (2020). Yüksek Güç Transformatörlerindeki Kısmi Deşarj Tespitinde Diyafram Tabanlı Fabry-Perot İnterferometrik Basınç Sensörlerinin Performans İyileştirilmesi için Diyafram Analizi. Avrupa Bilim Ve Teknoloji Dergisi231-238. https://doi.org/10.31590/ejosat.araconf29