Araştırma Makalesi
PDF EndNote BibTex RIS Kaynak Göster

Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri

Yıl 2020, 399 - 404, 01.04.2020
https://doi.org/10.31590/ejosat.araconf52

Öz

İki veya daha fazla sesin karışımından birini elde etmek veya gürültülü ortamda kaydedilen seslerin gürültüden ayrıştırılması her zaman popülerliğini korumaktadır. Gürültü çeşidi, kaynağı ve seslerin karışım ortamları bilinmediği için ayrıştırma işleminde kullanılan algoritmaların işlem süresi ve performansları farklılık göstermektedir. Karışmış işaretleri ayrıştırmada kör kaynak algoritmaları kullanılmaktadır. Doğrusal karışmış işaret kaynaklarından oluşan veri kümesinden, işaretlerin veya gürültünün ayrı ayrı tahmin edilme işlemi kör kaynak ayrıştırma olarak ifade edilmektedir. Mühendislik uygulamalarında birçok yöntem olsa da tasarım kısıtlamaları ve gereksinimleri göz önüne alındığında hangi algoritmanın daha uygun olacağını analiz etmek gerekir. Bu çalışmada üç farklı yöntem olarak; Pearson bağımsız bileşen analizi (Pearson Independent Component Analysis -PICA), İkinci dereceden kör tanımlama ( Second-Order Blind Identification-SOBİ) algoritması ve Ortak yaklaşım özdeğerlerin köşegenleştirilmesi (Joint Approximation Diagonalization of Eigen-matrices-JADE) algoritmaları karşılaştırılmıştır. Algoritmaların performans analizleri dikkate alınarak başarım oranları ve işlem sürelerine göre değerlendirilmiştir.

Kaynakça

  • Bach, F. R., & Jordan, M. I. (2002). Kernel independent component analysis. (s. 1-48). Journal of machine learning research.
  • Belouchrani, A., Abed-Meraim, K., Cardoso, J. -F., & Moulines, E. (1993). Second-order blind separation of temporally correlated sources. In Proc. Int. Conf. Digital Signal Processing, (s. 346-351). Citeseer.
  • Belouchrani, A., Abed-Meraim, K., Cardoso, J. -F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, (s. 434-444).
  • Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review on speech intelligibility in multiple-talker conditions. (s. 117-128). Acta Acustica united with Acustica.
  • Cardoso, J. F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE proceedings F (radar and signal processing) (s. 362-370). IET Digital Library.
  • Celik, H., Ilgin, F. Y., & Sevim, Y. (2019). Müzik işaretlerin tek kanal kör kaynak ayrıştırma ile ayrıştırılması. (s. 26-38). NWSA Engineering Sciences.
  • Hyvärinen, A. (1984). Independent component analysis: recent advances. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, (s. 371).
  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. (s. 411-430). Neural networks.
  • Ilgin, F. Y., Celik, H., & Sevim, Y. (2012). Stable signal separation algorithm for ECG signals. 2012 International Symposium on Innovations in Intelligent Systems and Applications (s. 1-4). IEEE.
  • Karvanen, J., Eriksson, J., & Koivunen, V. (2000). Pearson system based method for blind separation. Proceedings of Second International Workshop on Independent Component Analysis and Blind Signal Separation (ICA2000), (s. 585-590). Helsinki, Finland.
  • Kato, H., Nagahara, Y., Araki, S., Sawada, H., & Makino, S. (2006). Parametric-Pearson-based independent component analysis for frequency-domain blind speech separation. 14th European Signal Processing Conference, (s. 1-5). Florence.
  • Liu, X., Wang, H., Huang, M., & Yang, W. (2019). An improved second-order blind identification (SOBI) signal de-noising method for dynamic deflection measurements of bridges using ground-based synthetic aperture radar (GBSAR). Applied Sciences, (s. 3561-3561).
  • Miettinen, J., Nordhausen, K., & Taskinen, S. (2017). Blind source separation based on joint diagonalization in R: The packages JADE and BSSasymp. Journal of Statistical Software.
  • Rainieri, C. (2014). Perspectives of second-order blind identification for operational modal analysis of civil structures. (s. 1-9). Shock and Vibration.
  • Sahonero, G., & Calderon, H. (2017). A comparison of SOBI, FastICA, JADE and infomax algorithms. Proceedings of The 8th International Multi-Conference on Complexity.
  • Tan, L. (2007). Digital Signal Processing: Fundamentals and Applications. Academic Press.

Performance Analysis of Blind Source Algorithms in the Separation of Sound Signals

Yıl 2020, 399 - 404, 01.04.2020
https://doi.org/10.31590/ejosat.araconf52

Öz

Obtaining a mixture of two or more sounds or separating the sounds recorded in the noisy environment from noise is among the most studied topic. Since noise type, source and mixing environments of sounds are unknown, the processing time and performance of the algorithms used in the separation process differ. Blind source algorithms are used to decompose mixed signs. From the data set consisting of linear mixed signal sources, the process of estimating the signals or noise separately is expressed as blind source decomposition. Although there are many methods in engineering applications, it is necessary to analyze which algorithm will be more suitable considering the design constraints and requirements. In this study, as three different methods; Pearson independent component analysis (PICA), Second order blind identification (SOBI) algorithm and Joint approximate diagonalization of eigen matrices (JADE) algorithms were compared. It has been evaluated according to performance rates and processing times by considering the performance analysis of the algorithms.

Kaynakça

  • Bach, F. R., & Jordan, M. I. (2002). Kernel independent component analysis. (s. 1-48). Journal of machine learning research.
  • Belouchrani, A., Abed-Meraim, K., Cardoso, J. -F., & Moulines, E. (1993). Second-order blind separation of temporally correlated sources. In Proc. Int. Conf. Digital Signal Processing, (s. 346-351). Citeseer.
  • Belouchrani, A., Abed-Meraim, K., Cardoso, J. -F., & Moulines, E. (1997). A blind source separation technique using second-order statistics. IEEE Transactions on Signal Processing, (s. 434-444).
  • Bronkhorst, A. W. (2000). The cocktail party phenomenon: A review on speech intelligibility in multiple-talker conditions. (s. 117-128). Acta Acustica united with Acustica.
  • Cardoso, J. F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE proceedings F (radar and signal processing) (s. 362-370). IET Digital Library.
  • Celik, H., Ilgin, F. Y., & Sevim, Y. (2019). Müzik işaretlerin tek kanal kör kaynak ayrıştırma ile ayrıştırılması. (s. 26-38). NWSA Engineering Sciences.
  • Hyvärinen, A. (1984). Independent component analysis: recent advances. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, (s. 371).
  • Hyvärinen, A., & Oja, E. (2000). Independent component analysis: algorithms and applications. (s. 411-430). Neural networks.
  • Ilgin, F. Y., Celik, H., & Sevim, Y. (2012). Stable signal separation algorithm for ECG signals. 2012 International Symposium on Innovations in Intelligent Systems and Applications (s. 1-4). IEEE.
  • Karvanen, J., Eriksson, J., & Koivunen, V. (2000). Pearson system based method for blind separation. Proceedings of Second International Workshop on Independent Component Analysis and Blind Signal Separation (ICA2000), (s. 585-590). Helsinki, Finland.
  • Kato, H., Nagahara, Y., Araki, S., Sawada, H., & Makino, S. (2006). Parametric-Pearson-based independent component analysis for frequency-domain blind speech separation. 14th European Signal Processing Conference, (s. 1-5). Florence.
  • Liu, X., Wang, H., Huang, M., & Yang, W. (2019). An improved second-order blind identification (SOBI) signal de-noising method for dynamic deflection measurements of bridges using ground-based synthetic aperture radar (GBSAR). Applied Sciences, (s. 3561-3561).
  • Miettinen, J., Nordhausen, K., & Taskinen, S. (2017). Blind source separation based on joint diagonalization in R: The packages JADE and BSSasymp. Journal of Statistical Software.
  • Rainieri, C. (2014). Perspectives of second-order blind identification for operational modal analysis of civil structures. (s. 1-9). Shock and Vibration.
  • Sahonero, G., & Calderon, H. (2017). A comparison of SOBI, FastICA, JADE and infomax algorithms. Proceedings of The 8th International Multi-Conference on Complexity.
  • Tan, L. (2007). Digital Signal Processing: Fundamentals and Applications. Academic Press.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hüsamettin ÇELİK>
ERZİNCAN BİNALİ YILDIRIM ÜNİVERSİTESİ
0000-0002-7662-0674
Türkiye


Nurhan KARABOĞA>
ERCİYES ÜNİVERSİTESİ
0000-0002-4550-5251
Türkiye

Yayımlanma Tarihi 1 Nisan 2020
Yayınlandığı Sayı Yıl 2020, Cilt , Sayı

Kaynak Göster

Bibtex @araştırma makalesi { ejosat711054, journal = {Avrupa Bilim ve Teknoloji Dergisi}, eissn = {2148-2683}, address = {}, publisher = {Osman SAĞDIÇ}, year = {2020}, pages = {399 - 404}, doi = {10.31590/ejosat.araconf52}, title = {Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri}, key = {cite}, author = {Çelik, Hüsamettin and Karaboğa, Nurhan} }
APA Çelik, H. & Karaboğa, N. (2020). Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri . Avrupa Bilim ve Teknoloji Dergisi , Ejosat Özel Sayı 2020 (ARACONF) , 399-404 . DOI: 10.31590/ejosat.araconf52
MLA Çelik, H. , Karaboğa, N. "Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri" . Avrupa Bilim ve Teknoloji Dergisi (2020 ): 399-404 <https://dergipark.org.tr/tr/pub/ejosat/issue/53473/711054>
Chicago Çelik, H. , Karaboğa, N. "Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri". Avrupa Bilim ve Teknoloji Dergisi (2020 ): 399-404
RIS TY - JOUR T1 - Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri AU - HüsamettinÇelik, NurhanKaraboğa Y1 - 2020 PY - 2020 N1 - doi: 10.31590/ejosat.araconf52 DO - 10.31590/ejosat.araconf52 T2 - Avrupa Bilim ve Teknoloji Dergisi JF - Journal JO - JOR SP - 399 EP - 404 VL - IS - SN - -2148-2683 M3 - doi: 10.31590/ejosat.araconf52 UR - https://doi.org/10.31590/ejosat.araconf52 Y2 - 2020 ER -
EndNote %0 Avrupa Bilim ve Teknoloji Dergisi Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri %A Hüsamettin Çelik , Nurhan Karaboğa %T Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri %D 2020 %J Avrupa Bilim ve Teknoloji Dergisi %P -2148-2683 %V %N %R doi: 10.31590/ejosat.araconf52 %U 10.31590/ejosat.araconf52
ISNAD Çelik, Hüsamettin , Karaboğa, Nurhan . "Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri". Avrupa Bilim ve Teknoloji Dergisi / (Nisan 2020): 399-404 . https://doi.org/10.31590/ejosat.araconf52
AMA Çelik H. , Karaboğa N. Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri. EJOSAT. 2020; 399-404.
Vancouver Çelik H. , Karaboğa N. Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri. Avrupa Bilim ve Teknoloji Dergisi. 2020; 399-404.
IEEE H. Çelik ve N. Karaboğa , "Ses İşaretlerinin Ayrıştırılmasında Kör Kaynak Algoritmalarının Performans Analizleri", Avrupa Bilim ve Teknoloji Dergisi, ss. 399-404, Nis. 2020, doi:10.31590/ejosat.araconf52