Yıl 2020, Cilt , Sayı 20, Sayfalar 67 - 76 2020-12-31

Biochemical development of insulin resistance due to excess nutrition and the function of AMP-activated protein kinase (AMPK)
Aşırı beslenmeye bağlı oluşan insülin direncinin biyokimyasal gelişimi ve AMP-ile aktive edilmiş protein kinaz (AMPK)’ın fonksiyonu

Mustafa YAMAN [1] , Cemalettin KİSMİROĞLU [2] , Halime UĞUR [3] , İ̇̇smail BELLİ [4] , Bahtiyar ÖZGÜR [5]


Overnutrition and obesity are known to cause many chronic diseases such as insulin resistance, diabetes, and cancer. Insulin resistance is defined as a decrease in the ability of cells to respond to the effect of insulin in the transport of glucose to muscle and other tissues. With the development of obesity, nonesterified fatty acids, glycerol, hormones, pro-inflammatory cytokines released from adipose tissue are known to play a role in the development of insulin resistance. Especially cytokines and chemokines such as MCP-1 and TNFα cause hydrolysis of triglycerides in adipocytes, causing high levels of free fatty acids in circulation. These free fatty acids are then stored by the muscle and liver and beta cells again as DAG, TAG, and ceramide, blocking the IRS receptor causing its resistance. In addition, as a result of excessive fat nutrition, the accumulation of toxic lipid derivatives causes the inactivation of the intracellular energy sensor AMPK. Depending on the inactivation of AMPK, the glucose carrier protein (GLUT4) translocation decreases, and insulin resistance improves. Also, reduced activation of AMPK causes lipid accumulation in tissues, cellular dysfunctions, and, consequently, many chronic diseases. In addition to exercise, it is seen that some pharmaceutical drugs such as metformin, AICAR, and TZDs both reduce lipid accumulation and increase the activation of AMPK and prevent insulin resistance
Aşırı beslenme ve obezitenin, insülin direnci, diyabet, hipertansiyon, kardiyovasküler hastalıklar ve kanser gibi birçok kronik hastalığa neden olduğu bilinmektedir. İnsülin direnci, glikozun kas ve diğer dokulara taşınmasında hücrelerin insülininin etkisine yanıt verme yeteneğinin azalması olarak tanımlanır. Obezitenin gelişmesiyle birlikte yağ dokusundan salınan esterlenmemiş yağ asitleri, gliserol ve proinflamatuar sitokinler insülin direncine neden olur. Özellikle MCP-1 ve TNF-α gibi sitokin ve kemokinler adipositlerde trigliseridlerin hidrolizine neden olur. Ortaya çıkan serbest yağ asitleri dolaşım yoluyla kas, karaciğer ve beta hücrelerine taşınır ve DAG, TAG ve seramid olarak depolanır. Bu yağ asitleri türevlerinin birikimi hem IRS’yi bloke ederek insülin direncine, hemde hücre içi enerji sensörü olan AMPK’nin aktivasyonunun azalmasına neden olur. AMPK’nin aktivasyonunun azalması sonucu glukoz taşıyıcı proteininin translokasyonu azalır ve insülin direnci gelişir. Bunun yanında, AMPK’nin aktivasyonunun azalması dokularda lipit birikimine, hücresel işlev bozukluklarına ve birçok kronik hastalığın gelişmesine neden olur. Egzersizin yanında metformin, AICAR ve TZDs gibi bazı farmasötik ilaçların hem lipit birikimini azalttığı hem de AMPK’nin aktivasyonunu artırarak insülin direncini engellediği bildirilmiştir
  • [1] Aguirre, V., Uchida, T., Yenush, L., Davis, R., & White, M. F. (2000). The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. Journal of Biological Chemistry, 275(12), 9047-9054.
  • [2] Ahima, R. S., & Flier, J. S. (2000). Leptin. Annual review of physiology, 62(1), 413-437.
  • [3] Amati, F. (2012). Revisiting the diacylglycerol‐induced insulin resistance hypothesis. Obesity reviews, 13, 40-50.
  • [4] Bazzichetto, C., Conciatori, F., Falcone, I., Cognetti, F., Milella, M., & Ciuffreda, L. (2019). Advances in Tumor-Stroma Interactions: Emerging Role of Cytokine Network in Colorectal and Pancreatic Cancer. Journal of oncology, 2019.
  • [5] Berg, A. H., Combs, T. P., & Scherer, P. E. (2002). ACRP30/adiponectin: an adipokine regulating glucose and lipid metabolism. Trends in Endocrinology & Metabolism, 13(2), 84-89.
  • [6] Blázquez, C., Geelen, M. J., Velasco, G., & Guzmán, M. (2001). The AMP‐activated protein kinase prevents ceramide synthesis de novo and apoptosis in astrocytes. FEBS letters, 489(2-3), 149-153.
  • [7] Boden, G. (1997). Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes, 46(1), 3-10.
  • [8] Borst, S. E. (2004). The role of TNF-α in insulin resistance. Endocrine, 23(2-3), 177-182.
  • [9] Bouzakri, K., & Zierath, J. R. (2007). MAP4K4 gene silencing in human skeletal muscle prevents tumor necrosis factor-α-induced insulin resistance. Journal of Biological chemistry, 282(11), 7783-7789.
  • [10] Cazzolli, R., Carpenter, L., Biden, T. J., & Schmitz-Peiffer, C. (2001). A role for protein phosphatase 2A–like activity, but not atypical protein kinase Cζ, in the inhibition of protein kinase B/Akt and glycogen synthesis by palmitate. Diabetes, 50(10), 2210-2218.
  • [11] Christianson, J. L., Nicoloro, S., Straubhaar, J., & Czech, M. P. (2008). Stearoyl-CoA desaturase 2 is required for peroxisome proliferator-activated receptor γ expression and adipogenesis in cultured 3T3-L1 cells. Journal of Biological Chemistry, 283(5), 2906-2916.
  • [12] Cooney, G. J., Ruderman, N. B., Kraegen, E. W., Saha, A. K., Preston, E., Wilks, D., & Hoy, A. J. (2006). Increased malonyl-CoA and diacylglycerol content and. J. Physiol, 574(1), 17-31.
  • [13] Coughlan, K. A., Valentine, R. J., Ruderman, N. B., & Saha, A. K. (2013). Nutrient excess in AMPK downregulation and insulin resistance. Journal of endocrinology, diabetes & obesity, 1(1), 1008.
  • [14] Curat, C. A., Miranville, A., Sengenès, C., Diehl, M., Tonus, C., Busse, R., & Bouloumié, A. (2004). From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes, 53(5), 1285-1292.
  • [15] El-Assaad, W., Buteau, J., Peyot, M. L., Nolan, C., Roduit, R., Hardy, S., ... & Prentki, M. (2003). Saturated fatty acids synergize with elevated glucose to cause pancreatic β-cell death. Endocrinology, 144(9), 4154-4163.
  • [16] Engelking, L. J., Kuriyama, H., Hammer, R. E., Horton, J. D., Brown, M. S., Goldstein, J. L., & Liang, G. (2004). Overexpression of Insig-1 in the livers of transgenic mice inhibits SREBP processing and reduces insulin-stimulated lipogenesis. The Journal of clinical investigation, 113(8), 1168-1175.
  • [17] Feige, J. N., & Auwerx, J. (2007). Transcriptional coregulators in the control of energy homeostasis. Trends in cell biology, 17(6), 292-301.
  • [18] Frayn, K. N., Shadid, S. A. M. Y. A. H., Hamlani, R. O. O. H. I., Humphreys, S. M., Clark, M. L., Fielding, B. A., ... & Coppack, S. W. (1994). Regulation of fatty acid movement in human adipose tissue in the postabsorptive-to-postprandial transition. American Journal of Physiology-Endocrinology And Metabolism, 266(3), E308-E317.
  • [19] Gizlici MN, Çatak J. (2019) Diabetes Mellitus ve Çinko İlişkisi. Türkiye Diyabet ve Obezite Dergisi, 2: 107-113.
  • [20] Gleason, C. E., Lu, D., Witters, L. A., Newgard, C. B., & Birnbaum, M. J. (2007). The role of AMPK and mTOR in nutrient sensing in pancreatic β-cells. Journal of Biological Chemistry, 282(14), 10341-10351.
  • [21] Granneman, J. G., & Moore, H. P. H. (2008). Location, location: protein trafficking and lipolysis in adipocytes. Trends in Endocrinology & Metabolism, 19(1), 3-9.
  • [22] Griffin, M. E., Marcucci, M. J., Cline, G. W., Bell, K., Barucci, N., Lee, D., ... & Shulman, G. I. (1999). Free fatty acid-induced insulin resistance is associated with activation of protein kinase C theta and alterations in the insulin signaling cascade. Diabetes, 48(6), 1270-1274.
  • [23] Guilherme, A., Virbasius, J. V., Puri, V., & Czech, M. P. (2008). Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nature reviews Molecular cell biology, 9(5), 367-377.
  • [24] Hardie, D. G., & Carling, D. (1997). The AMP‐activated protein kinase: Fuel gauge of the mammalian cell?. European journal of biochemistry, 246(2), 259-273.
  • [25] Hardie, D. G., & Hawley, S. A. (2001). AMP‐activated protein kinase: the energy charge hypothesis revisited. Bioessays, 23(12), 1112-1119.
  • [26] Hirosumi, J., Tuncman, G., Chang, L., Görgün, C. Z., Uysal, K. T., Maeda, K., ... & Hotamisligil, G. S. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420(6913), 333-336. [27] Holland, W. L., Brozinick, J. T., Wang, L. P., Hawkins, E. D., Sargent, K. M., Liu, Y., ... & Nelson, D. H. (2007). Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell metabolism, 5(3), 167-179.
  • [28] Hundal, R. S., Petersen, K. F., Mayerson, A. B., Randhawa, P. S., Inzucchi, S., Shoelson, S. E., & Shulman, G. I. (2002). Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. The Journal of clinical investigation, 109(10), 1321-1326.
  • [29] Ido, Y., Carling, D., & Ruderman, N. (2002). Hyperglycemia-induced apoptosis in human umbilical vein endothelial cells: inhibition by the AMP-activated protein kinase activation. Diabetes, 51(1), 159-167.
  • [30] Imai, T., Takakuwa, R., Marchand, S., Dentz, E., Bornert, J. M., Messaddeq, N., ... & Chambon, P. (2004). Peroxisome proliferator-activated receptor γ is required in mature white and brown adipocytes for their survival in the mouse. Proceedings of the National Academy of Sciences, 101(13), 4543-4547.
  • [31] Inouye, K. E., Shi, H., Howard, J. K., Daly, C. H., Lord, G. M., Rollins, B. J., & Flier, J. S. (2007). Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes, 56(9), 2242-2250.
  • [32] Jeon, S. M. (2016). Regulation and function of AMPK in physiology and diseases. Experimental & molecular medicine, 48(7), e245-e245.
  • [33] Kahn, B. B., & Flier, J. S. (2000). Obesity and insulin resistance. The Journal of clinical investigation, 106(4), 473-481.
  • [34] Kahn, S. E., Hull, R. L., & Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature, 444(7121), 840-846.
  • [35] Kalderon, B., Mayorek, N., Berry, E., Zevit, N., & Bar-Tana, J. (2000). Fatty acid cycling in the fasting rat. American Journal of Physiology-Endocrinology And Metabolism, 279(1), E221-E227.
  • [36] Kanda, H., Tateya, S., Tamori, Y., Kotani, K., Hiasa, K. I., Kitazawa, R., ... & Kasuga, M. (2006). MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. The Journal of clinical investigation, 116(6), 1494-1505.
  • [37] Kelley, D. E., Mokan, M., Simoneau, J. A., & Mandarino, L. J. (1993). Interaction between glucose and free fatty acid metabolism in human skeletal muscle. The Journal of clinical investigation, 92(1), 91-98.
  • [38] Kismiroğlu, C., Cengiz, S., & Yaman, M. (2020). AMPK'nin Biyokimyası: Etki Mekanizmaları ve Diyabetin Tedavisindeki Önemi. Avrupa Bilim ve Teknoloji Dergisi, (18), 162-170.
  • [39] Kodiha, M., & Stochaj, U. (2011). Targeting AMPK for therapeutic intervention in type 2 diabetes. Rijeka, Croatia: InTech.
  • [40] Kraegen, E. W., Cooney, G. J., Ye, J. M., Thompson, A. L., & Furler, S. M. (2001). The role of lipids in the pathogenesis of muscle insulin resistance and beta cell failure in type II diabetes and obesity. Experimental and Clinical Endocrinology & Diabetes, 109(Suppl 2), S189-S201.
  • [41] Kraegen, E. W., Saha, A. K., Preston, E., Wilks, D., Hoy, A. J., Cooney, G. J., & Ruderman, N. B. (2006). Increased malonyl-CoA and diacylglycerol content and reduced AMPK activity accompany insulin resistance induced by glucose infusion in muscle and liver of rats. American Journal of Physiology-Endocrinology and Metabolism, 290(3), E471-E479
  • [42] Krssak, M. F. P. K., Petersen, K. F., Dresner, A., DiPietro, L., Vogel, S. M., Rothman, D. L., ... & Roden, M. (1999). Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a 1H NMR spectroscopy study. Diabetologia, 42(1), 113-116.
  • [43] Lagathu, C., Yvan-Charvet, L., Bastard, J. P., Maachi, M., Quignard-Boulange, A., Capeau, J., & Caron, M. (2006). Long-term treatment with interleukin-1β induces insulin resistance in murine and human adipocytes. Diabetologia, 49(9), 2162-2173.
  • [44] Minokoshi, Y., Kim, Y. B., Peroni, O. D., Fryer, L. G., Müller, C., Carling, D., & Kahn, B. B. (2002). Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature, 415(6869), 339-343.
  • [45] Moule, S. K., & Denton, R. M. (1998). The activation of p38 MAPK by the β‐adrenergic agonist isoproterenol in rat epididymal fat cells. FEBS letters, 439(3), 287-290.
  • [46] Neuschwander-Tetri, B. A., & Caldwell, S. H. (2003). Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology, 37(5), 1202-1219.
  • [47] Oral, E. A., Simha, V., Ruiz, E., Andewelt, A., Premkumar, A., Snell, P., ... & Gorden, P. (2002). Leptin-replacement therapy for lipodystrophy. New England Journal of Medicine, 346(8), 570-578.
  • [48] Park, H., Kaushik, V. K., Constant, S., Prentki, M., Przybytkowski, E., Ruderman, N. B., & Saha, A. K. (2002). Coordinate regulation of malonyl-CoA decarboxylase, sn-glycerol-3-phosphate acyltransferase, and acetyl-CoA carboxylase by AMP-activated protein kinase in rat tissues in response to exercise. Journal of Biological Chemistry, 277(36), 32571-32577.
  • [49] Perseghin, G., Scifo, P., De Cobelli, F., Pagliato, E., Battezzati, A., Arcelloni, C., ... & Luzi, L. (1999). Intramyocellular triglyceride content is a determinant of in vivo insulin resistance in humans: a 1H-13C nuclear magnetic resonance spectroscopy assessment in offspring of type 2 diabetic parents. Diabetes, 48(8), 1600-1606.
  • [50] Reaven, G. (2002). Metabolic syndrome: pathophysiology and implications for management of cardiovascular disease. Circulation, 106(3), 286-288.
  • [51] Rosen, E. D., & Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature, 444(7121), 847-853.
  • [52] Ruderman, N. B., Saha, A. K., & Kraegen, E. W. (2003). Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology, 144(12), 5166-5171.
  • [53] Ruderman, N. B., Saha, A. K., Vavvas, D., & Witters, L. A. (1999). Malonyl-CoA, fuel sensing, and insulin resistance. American Journal of Physiology-Endocrinology And Metabolism, 276(1), E1-E18.
  • [54] Ruderman, N., & Prentki, M. (2004). AMP kinase and malonyl-CoA: targets for therapy of the metabolic syndrome. Nature reviews Drug discovery, 3(4), 340-351.
  • [55] Saha, A. K., Xu, X. J., Balon, T. W., Brandon, A., Kraegen, E. W., & Ruderman, N. B. (2011). Insulin resistance due to nutrient excess: is it a consequence of AMPK downregulation?. Cell cycle, 10(20), 3447-3451.
  • [56] Santomauro, A. T., Boden, G., Silva, M. E., Rocha, D. M., Santos, R. F., Ursich, M. J., ... & Wajchenberg, B. L. (1999). Overnight lowering of free fatty acids with Acipimox improves insulin resistance and glucose tolerance in obese diabetic and nondiabetic subjects. Diabetes, 48(9), 1836-1841.
  • [57] Sartipy, P., & Loskutoff, D. J. (2003). Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proceedings of the National Academy of Sciences, 100(12), 7265-7270.
  • [58] Savage, D. B., Petersen, K. F., & Shulman, G. I. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiological reviews, 87(2), 507-520 . [59] Shimabukuro, M., Higa, M., Zhou, Y. T., Wang, M. Y., Newgard, C. B., & Unger, R. H. (1998). Lipoapoptosis in Beta-cells of Obese Prediabeticfa/fa Rats Role of Serine Palmitoyltransferase Overexpression. Journal of Biological Chemistry, 273(49), 32487-32490.
  • [60] Solinas, G., Vilcu, C., Neels, J. G., Bandyopadhyay, G. K., Luo, J. L., Naugler, W., ... & Karin, M. (2007). JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell metabolism, 6(5), 386-397.
  • [61] Stephens, J. M., Lee, J., & Pilch, P. F. (1997). Tumor necrosis factor-α-induced insulin resistance in 3T3-L1 adipocytes is accompanied by a loss of insulin receptor substrate-1 and GLUT4 expression without a loss of insulin receptor-mediated signal transduction. Journal of Biological Chemistry, 272(2), 971-976.
  • [62] Suganami, T., Tanimoto-Koyama, K., Nishida, J., Itoh, M., Yuan, X., Mizuarai, S., ... & Kamei, Y. (2007). Role of the Toll-like receptor 4/NF-κB pathway in saturated fatty acid–induced inflammatory changes in the interaction between adipocytes and macrophages. Arteriosclerosis, thrombosis, and vascular biology, 27(1), 84-91.
  • [63] Summers, S. A., & Nelson, D. H. (2005). A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome. Diabetes, 54(3), 591-602.
  • [64] Tsukumo, D. M., Carvalho-Filho, M. A., Carvalheira, J. B., Prada, P. O., Hirabara, S. M., Schenka, A. A., ... & Saad, M. J. (2007). Loss-of-function mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes, 56(8), 1986-1998.
  • [65] Unger, R. H. (1995). Lipotoxicity in the pathogenesis of obesity-dependent NIDDM: genetic and clinical implications. Diabetes, 44(8), 863-870.
  • [66] Unger, R. H. (2002). Lipotoxic diseases. Annual review of medicine, 53(1), 319-336.
  • [67] Uysal, K. T., Wiesbrock, S. M., Marino, M. W., & Hotamisligil, G. S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature, 389(6651), 610-614. [68] Weisberg, S. P., McCann, D., Desai, M., Rosenbaum, M., Leibel, R. L., & Ferrante, A. W. (2003). Obesity is associated with macrophage accumulation in adipose tissue. The Journal of clinical investigation, 112(12), 1796-1808.
  • [69] Winder, W. W., Holmes, B. F., Rubink, D. S., Jensen, E. B., Chen, M., & Holloszy, J. O. (2000). Activation of AMP-activated protein kinase increases mitochondrial enzymes in skeletal muscle. Journal of applied physiology, 88(6), 2219-2226.
  • [70] Wu, X., Motoshima, H., Mahadev, K., Stalker, T. J., Scalia, R., & Goldstein, B. J. (2003). Involvement of AMP-activated protein kinase in glucose uptake stimulated by the globular domain of adiponectin in primary rat adipocytes. Diabetes, 52(6), 1355-1363.
  • [71] Wu, Y., Song, P., Xu, J., Zhang, M., & Zou, M. H. (2007). Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. Journal of Biological Chemistry, 282(13), 9777-9788.
  • [72] Xu, H., Barnes, G. T., Yang, Q., Tan, G., Yang, D., Chou, C. J., ... & Chen, H. (2003). Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. The Journal of clinical investigation, 112(12), 1821-1830.
  • [73] Yamauchi, T., Kamon, J., Minokoshi, Y. A., Ito, Y., Waki, H., Uchida, S., ... & Eto, K. (2002). Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nature medicine, 8(11), 1288-1295.
  • [74] Yuan, M., Konstantopoulos, N., Lee, J., Hansen, L., Li, Z. W., Karin, M., & Shoelson, S. E. (2001). Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkβ. Science, 293(5535), 1673-1677.
  • [75] Zidi, I., Mestiri, S., Bartegi, A., & Amor, N. B. (2010). TNF-α and its inhibitors in cancer. Medical Oncology, 27(2), 185-198.
Birincil Dil tr
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Orcid: 0000-0001-9692-0204
Yazar: Mustafa YAMAN (Sorumlu Yazar)
Kurum: İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-9492-9069
Yazar: Cemalettin KİSMİROĞLU
Kurum: İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-2932-4215
Yazar: Halime UĞUR
Kurum: İSTANBUL MEDİPOL ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-9546-0207
Yazar: İ̇̇smail BELLİ
Kurum: İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ
Ülke: Turkey


Orcid: 0000-0002-7147-3230
Yazar: Bahtiyar ÖZGÜR
Kurum: İSTANBUL SABAHATTİN ZAİM ÜNİVERSİTESİ
Ülke: Turkey


Tarihler

Yayımlanma Tarihi : 31 Aralık 2020

APA Yaman, M , Ki̇smi̇roğlu, C , Uğur, H , Belli̇, İ , Özgür, B . (2020). Aşırı beslenmeye bağlı oluşan insülin direncinin biyokimyasal gelişimi ve AMP-ile aktive edilmiş protein kinaz (AMPK)’ın fonksiyonu . Avrupa Bilim ve Teknoloji Dergisi , (20) , 67-76 . DOI: 10.31590/ejosat.746132