Araştırma Makalesi
BibTex RIS Kaynak Göster

Fiziki Kayıpların Azaltılması İçin İzole Alt Bölgelerin Etkin Yönetimi

Yıl 2021, Sayı: 22, 306 - 315, 31.01.2021
https://doi.org/10.31590/ejosat.856200

Öz

İçmesuyu şebekelerindeki su kayıpları en basit olarak şebekeye verilen su ile aboneden tahakkuk ettirilen su arasındaki fark olarak tanımlanmaktadır. Bu kayıpların pek çok sebepleri (sayaçların hatalı okuması, şebekedeki sızıntılar, depo sızıntı ve taşmaları ile pompa salmastralarından kaynaklanan kayıplar, vb.) vardır. Bu sebeplerden en önemlisi sistem basıncından kaynaklanan fiziki sızıntılardır. Bu sorunu çözebilmek için ileri otomasyon sistemleri ile izlemeyi içeren yeni yaklaşımlara ihtiyaç vardır. Bu izlemeyi en iyi şekilde yapabilmek için su dağıtım şebekeleri bilinen klasik yöntemden ziyade İzole Alt Bölgeler (İAB) şeklinde tesis edilmesi gerekmektedir. Su idareleri İAB’lerin girişlerine Basınç Kırıcı Vana (BKV) ve debimetre takarak sistem basıncını yönetmektedirler. Bu çalışmada, İAB’lerdeki BKV’lerin etkin bir şekilde çalıştırılması için yapılması gerekenlerden bahsedilmiştir. Ayrıca, İBA’ların verimli bir şekilde yönetilmesi için geliştirilen yazılımın saha uygulamasından örnekler verilmiştir. Geliştirilen yazılımın su yönetimine sağladığı katkılar ortaya konmuştur. Yazılım sayesinde şebekedeki fiziki sızıntı miktarları belirlenerek işletme verimliliği ortaya konulmuştur. Ayrıca İAB’ların etkin kontrolünün sonucu sağlanan kazanımlara örnekler verilmiştir. Çalışma sırasında İBA’ların basınçları 7.5 bardan 3-5 bara düşürülerek sistemin dengeli (stabil) çalışması sağlanmıştır. İAB’lerin etkin yönetilmesi sonucunda yüzeye çıkmayan arızalara zamanında müdahale edilmesinin sonucu olarak yaklaşık %7’lik su kaybının önlendiği ortaya konulmuştur. Ayrıca ortaya çıkan arıza sayılarında %55’lik bir azalmanın olduğu görülmüştür.

Teşekkür

Sayın yetkili böyle bir derginin çıkarılması için göstermiş olduğunuz gayretleriniz için tüm çalışma arkadaşlarınıza teşekkür ederim.

Kaynakça

  • Abu-Mahfouz, A. M. (2016). Real-time dynamic hydraulic model for potable water loss reduction. Procedia Engineering, 154(7), 99– 106.
  • Araujo, L. S. (2006). Pressure control for leakage minimisation in water distribution systems management. Water Resources Management, 20, 133–149, .
  • Ates, S. (2016). Hydraulic modelling of closed pipes in loop equations of water distribution networks. Applied Mathematical Modelling, 40, 966–983.
  • Choi Y.J., A. J. (2014). Best Management Practices For Water Loss Control İn Seoul. Procedia Engineering, 1585-1593.
  • Farley, M. &. (2003). Losses in water distribution networks-A practitioner’s guide to assessment, monitoring and control. IWA Publishing. London: 2003.
  • Fernando G. A., A. A. (2019). “Pressure Management For Leakage Reduction Using Pressure Reducing Valves, Case Study İn An Andean City. Alexandria Engineering Journal 58, 1313–1326.
  • Fontana N., A. M. (2018). Real-Time Control Of Pressure For Leakage Reduction İnWater Distribution Network: Field Experiments. J. Water Resour. Plann. Manage 144(3), 04017096-1-04017096-12, .
  • García V. J. Cabrera E., C. E. (August 2006). The Mınımum Nıght Flow Method Revisited. 8th Annual Water Distribution Systems Analysis Symposium, (s. 27-30,). Cincinnati, Ohio, USA,.
  • Giustolisi, O. S. (2008). Pressure-driven demand and leakage simulation for water distribution networks. Journal of Hydraulic Engineering, 134(5), 626–635.
  • Hussein M., Y. K. (2017). Effects Of Number Of Connectıons And Pıpe Length To The Water Losses In Melaka. Jurnal Teknologi (Sciences & Engineering) 79:3, 45–59.
  • Jaber M. A. Alkasseh, M. N. (2013). Applying Minimum Night Flow to Estimate Water Loss Using Statistical Modeling: A Case Study in Kinta Valley. Water Resour Manage, 27, 1439–1455.
  • Kanakoudis V., G. K. (2014). Applying Pressure Management to Reduce Water Losses in Two Greek cities’ WDSs: Expectations, Problems, Results and Revisions. Procedia Engineering 89, 318 – 325.
  • Kara S., K. I. (2015). Real time monitoring and control in water distribution systems for improving operational efficiency. Desalination and Water Treatment, 1–14.
  • Karadirek, İ. E. (2016). Urban Water Losses Management In Turkey: The Legıslatıon And Challenges. Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering, 572 –584.
  • Karathanasia I, P. C. (2016). Development of a leakage control system at the water supply network of the city of Patras. , Procedia Engineering 162, 553 – 558, .
  • Kazeem B. A., Y. H. (2018). Pressure Management Strategies for Water Loss Reduction in Large-Scale Water Piping Networks: A Review. Advances in Hydroinformatics, Springer Water, 465-480.
  • Lambert, A. (2000). What do we know about pressure: Leakage relationship in distribution systems? Brno: IWA,, Czech Rep: System Approach to Leakage Control and Water Distribution Management.
  • May, J. ( 1994). Leakage, pressure and control. BICS International Conference on Leakage Control. London: BICS.
  • Muhammetoğlu A, M. H. ( 2018). Management of Water Losses in Water Supply and Distribution Networks in Turkey. Turkısh Journal Of Water Scıence & Management ,anuary - February - March - April - May - June / Volume.
  • Muhammetoğlu A., M. H. (2018). Management Of Water Losses İn Water Supply And Distribution Networks İn Turkey. Turkısh Journal Of Water Scıence & Management, Volume 2, Issue 1, 58 - 75.
  • Samir N., K. R. (2017). Pressure control for minimizing leakage in water distribution systems. Alexandria Engineering Journal 56, 601–612.
  • Thornton, J. &. (2005). Progress in practical prediction of pressure: Leakage, pressure: burst frequency and pressure: consumption relationships. Proceedings of the IWA Special Conference, Leakage 05. Nova Scotia: IWA.
  • Thornton, J. &. (2007). Pressure management extends infrastructure life and reduce un-necessary energy cost. Proceedings of the IWA Special Conference on Water Loss (s. 511–521). Bucharest, Romania, : IWA.
  • Wu, Z. Y. (2011). Water loss reduction (1 b.). USA: Bentley Institute Press.

Effectıve Management Of District Meters Areas To Reduce Physıcal Losses

Yıl 2021, Sayı: 22, 306 - 315, 31.01.2021
https://doi.org/10.31590/ejosat.856200

Öz

Water losses in drinking water networks are simply defined as the difference between water supplied to the network and water accrued from the subscriber. There are many reasons (improper reading of meters, leaks in the network, tank leaks and overflows, as well as losses caused by pump seals, etc) for these losses. The most important of these reasons are physical leaks caused by system pressure. In order to solve this problem, new approaches are needed, which include advanced automation systems and monitoring. In order to make this monitoring in the best way, water distribution networks need to be created in the form of isolated District Meters Areas (DMA), rather than the conventionally known methods. Water administrations manage the system pressure by installing Pressure regulating Valves (PRV) and aflow meter at the inputs of DMAs. In this study, it is explained about what needs to be done to operate effectively PRVs in DMA. In addition, examples are given from the field application data treatments by means of the software developed for the efficient management of DMAs. The contributions of the developed software to water management have been demonstrated. The amount of physical leakage in the network is determined and operational efficiency is demonstrated through software. In addition, examples of gains are achieved as a result of effective control of DMAs. During the operation, the pressure of the DMAs is reduced from 7.5 bar to 3-5 bar, and the system was enabled to work stabally. As a result of effective management of IABS, water loss of approximately 7% is prevented by timely intervention in faults that do not surface. In addition, it was observed that there is a 55% decrease in the number of malfunctions.

Kaynakça

  • Abu-Mahfouz, A. M. (2016). Real-time dynamic hydraulic model for potable water loss reduction. Procedia Engineering, 154(7), 99– 106.
  • Araujo, L. S. (2006). Pressure control for leakage minimisation in water distribution systems management. Water Resources Management, 20, 133–149, .
  • Ates, S. (2016). Hydraulic modelling of closed pipes in loop equations of water distribution networks. Applied Mathematical Modelling, 40, 966–983.
  • Choi Y.J., A. J. (2014). Best Management Practices For Water Loss Control İn Seoul. Procedia Engineering, 1585-1593.
  • Farley, M. &. (2003). Losses in water distribution networks-A practitioner’s guide to assessment, monitoring and control. IWA Publishing. London: 2003.
  • Fernando G. A., A. A. (2019). “Pressure Management For Leakage Reduction Using Pressure Reducing Valves, Case Study İn An Andean City. Alexandria Engineering Journal 58, 1313–1326.
  • Fontana N., A. M. (2018). Real-Time Control Of Pressure For Leakage Reduction İnWater Distribution Network: Field Experiments. J. Water Resour. Plann. Manage 144(3), 04017096-1-04017096-12, .
  • García V. J. Cabrera E., C. E. (August 2006). The Mınımum Nıght Flow Method Revisited. 8th Annual Water Distribution Systems Analysis Symposium, (s. 27-30,). Cincinnati, Ohio, USA,.
  • Giustolisi, O. S. (2008). Pressure-driven demand and leakage simulation for water distribution networks. Journal of Hydraulic Engineering, 134(5), 626–635.
  • Hussein M., Y. K. (2017). Effects Of Number Of Connectıons And Pıpe Length To The Water Losses In Melaka. Jurnal Teknologi (Sciences & Engineering) 79:3, 45–59.
  • Jaber M. A. Alkasseh, M. N. (2013). Applying Minimum Night Flow to Estimate Water Loss Using Statistical Modeling: A Case Study in Kinta Valley. Water Resour Manage, 27, 1439–1455.
  • Kanakoudis V., G. K. (2014). Applying Pressure Management to Reduce Water Losses in Two Greek cities’ WDSs: Expectations, Problems, Results and Revisions. Procedia Engineering 89, 318 – 325.
  • Kara S., K. I. (2015). Real time monitoring and control in water distribution systems for improving operational efficiency. Desalination and Water Treatment, 1–14.
  • Karadirek, İ. E. (2016). Urban Water Losses Management In Turkey: The Legıslatıon And Challenges. Anadolu University Journal of Science and Technology A- Applied Sciences and Engineering, 572 –584.
  • Karathanasia I, P. C. (2016). Development of a leakage control system at the water supply network of the city of Patras. , Procedia Engineering 162, 553 – 558, .
  • Kazeem B. A., Y. H. (2018). Pressure Management Strategies for Water Loss Reduction in Large-Scale Water Piping Networks: A Review. Advances in Hydroinformatics, Springer Water, 465-480.
  • Lambert, A. (2000). What do we know about pressure: Leakage relationship in distribution systems? Brno: IWA,, Czech Rep: System Approach to Leakage Control and Water Distribution Management.
  • May, J. ( 1994). Leakage, pressure and control. BICS International Conference on Leakage Control. London: BICS.
  • Muhammetoğlu A, M. H. ( 2018). Management of Water Losses in Water Supply and Distribution Networks in Turkey. Turkısh Journal Of Water Scıence & Management ,anuary - February - March - April - May - June / Volume.
  • Muhammetoğlu A., M. H. (2018). Management Of Water Losses İn Water Supply And Distribution Networks İn Turkey. Turkısh Journal Of Water Scıence & Management, Volume 2, Issue 1, 58 - 75.
  • Samir N., K. R. (2017). Pressure control for minimizing leakage in water distribution systems. Alexandria Engineering Journal 56, 601–612.
  • Thornton, J. &. (2005). Progress in practical prediction of pressure: Leakage, pressure: burst frequency and pressure: consumption relationships. Proceedings of the IWA Special Conference, Leakage 05. Nova Scotia: IWA.
  • Thornton, J. &. (2007). Pressure management extends infrastructure life and reduce un-necessary energy cost. Proceedings of the IWA Special Conference on Water Loss (s. 511–521). Bucharest, Romania, : IWA.
  • Wu, Z. Y. (2011). Water loss reduction (1 b.). USA: Bentley Institute Press.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Recep Kılıç 0000-0003-1580-1997

Yayımlanma Tarihi 31 Ocak 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 22

Kaynak Göster

APA Kılıç, R. (2021). Fiziki Kayıpların Azaltılması İçin İzole Alt Bölgelerin Etkin Yönetimi. Avrupa Bilim Ve Teknoloji Dergisi(22), 306-315. https://doi.org/10.31590/ejosat.856200