Araştırma Makalesi
BibTex RIS Kaynak Göster

Feasible Waveguide Method for Obtaining Electromagnetic Properties of Biaxial Bianisotropic Materials with Strong Magneto-Electric Coupling

Yıl 2021, Sayı: 25, 493 - 497, 31.08.2021
https://doi.org/10.31590/ejosat.894691

Öz

In this study, an easy-to-apply waveguide method is proposed for material characterization of biaxial bianisotropic samples with strong magneto-electric coupling. Its underlying expressions are derived considering scattering (S-) parameters of the sample at one fixed orientation in two waveguides at their dominant modes with different cross sections. The method is validated by synthesized and retrieved electromagnetic properties of a sample when there is no/some noise.

Kaynakça

  • Akhtar, M.J., Feher, L.E., & Thumm, M. (2006). A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials. IEEE Trans. Microw. Theory Techn., 54(5), 2011-2022.
  • Akhter, Z. & Akhtar, M.J. (2016). Free-space time domain position insensitive technique for simultaneous measurement of complex permittivity and thickness of lossy dielectric samples. IEEE Trans. Instrum. Meas., 65(10), 2394-2405.
  • Allen, K.W., Scott, M.M., Reid, D.R., Bean, J.A., Ellis, J.D., Morris, A.P., & Marsh, J.M. (2016). An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity. Rev. Sci. Instrum., 87(5), 054703.
  • Baker-Jarvis, J., Vanzura, E.J., & Kissick, W.A. (1990). Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microw. Theory Techn., 38(8), 1096-1103.
  • Barroso, J.J. & Hasar, U.C. (2012). Constitutive parameters of a metamaterial slab retrieved by the phase unwrapping method. J. Infrared Milli. Terahertz Waves, 33(2), 237-244.
  • Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., & Kong, J.A. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944-12949.
  • Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., & Varadan, V.K. (2004). Microwave electronics: Measurement and materials characterization. John Wiley & Sons.
  • Damaskos, N., Mack, R.B., Maffett, A.L., Parmon, W., & Uslenghi, P.L.E. (1984). The inverse problem for biaxial materials. IEEE Trans. Microw. Theory Techn., 32(4), 400-405.
  • Hasar, U.C., Barroso, J.J., Sabah, C., Kaya, Y., & Ertugrul, M. (2013). Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials. J. Opt. Soc. Am. B, 30(4), 1058-1068.
  • Hasar, U.C., Barroso, J.J., Karacali, T., & Ertugrul, M. (2015). Reference-plane-invariant and thickness- and branch-index-independent retrieval of effective parameters of bi-anisotropic metamaterials. AIP Adv., 5, 017123.
  • Hasar, U.C., Muratoglu, A., Bute, M., Barroso, J.J., & Ertugrul, M. (2017). Effective constitutive parameters retrieval method for bianisotropic metamaterials using waveguide measurements. IEEE Trans. Microw. Theory Techn., 65(5), 1488-1497.
  • Hasar, U.C. (2018). Self-calibrating transmission-reflection technique for constitutive parameters retrieval of materials. IEEE Trans. Microw. Theory Techn., 66(2), 1081-1089.
  • Hasar, U.C. & Ozturk, G. (2018). Note: Parameter extraction of samples without the direct application of the passivity principle from reference-plane-invariant measurements. Rev. Sci. Instrum., 89, 076104.
  • Hasar, U.C., Yildiz, G., Bute, M., & Muratoglu, A. (2018). Reference-plane-invariant waveguide method for electromagnetic characterization of bi-axial bianisotropic metamaterials. Sens. Actuators A Phys., 283, 141-150.
  • Hawro, P., Kwater, T., Pekala, R., & Twarog, B. (2019). Soft sensor with adaptive algorithm for filter gain correction in the online monitoring system of a polluted river. Applied Sciences, 9(9), 1883.
  • Jablonskas, D., Lapinskas, S., Rudys, S., Ivanov, M., & Banys, J. (2017). Full-wave finite space model of open-ended coaxial line for dielectric spectroscopy of liquids. Rev. Sci. Instrum., 88(8), 084703.
  • Jha, A.K. & Akhtar, M.J. (2014). A generalized rectangular cavity approach for determination of complex permittivity of materials. IEEE Trans. Instrum. Meas., 63(11), 2632-2641.
  • Siddiqui, O.F., Mojahedi, M., & Eleftheriades, G.V. (2003). Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Trans. Antennas Propag., 51(10), 2619-2625.
  • Xu, X. (2018). Double waveguide method to retrieve the electromagnetic parameters of biaxial anisotropic materials. Electron. Lett., 54(21), 1224–1226.

Güçlü Manyeto-Elektrik Kuplajlı Biaksiyal Bianizotropik Malzemelerin Elektromanyetik Özelliklerini Elde Etmek İçin Uygulanabilir Dalga Kılavuzu Yöntemi

Yıl 2021, Sayı: 25, 493 - 497, 31.08.2021
https://doi.org/10.31590/ejosat.894691

Öz

Bu çalışmada, güçlü manyeto-elektrik kuplajlı biaksiyal bianizotropik numunelerin malzeme karakterizasyonu için uygulanması kolay bir dalga kılavuzu yöntemi önerilmiştir. Temel ifadeleri, farklı kesitlere sahip baskın modlarında iki dalga kılavuzunda sabit bir yönelimde numunenin saçılma (S-) parametreleri dikkate alınarak türetilmiştir. Yöntem, gürültü olmadığında/bir miktar gürültü olduğunda bir numunenin sentezlenen ve yeniden elde edilen elektromanyetik özellikleriyle doğrulanmıştır.

Kaynakça

  • Akhtar, M.J., Feher, L.E., & Thumm, M. (2006). A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials. IEEE Trans. Microw. Theory Techn., 54(5), 2011-2022.
  • Akhter, Z. & Akhtar, M.J. (2016). Free-space time domain position insensitive technique for simultaneous measurement of complex permittivity and thickness of lossy dielectric samples. IEEE Trans. Instrum. Meas., 65(10), 2394-2405.
  • Allen, K.W., Scott, M.M., Reid, D.R., Bean, J.A., Ellis, J.D., Morris, A.P., & Marsh, J.M. (2016). An X-band waveguide measurement technique for the accurate characterization of materials with low dielectric loss permittivity. Rev. Sci. Instrum., 87(5), 054703.
  • Baker-Jarvis, J., Vanzura, E.J., & Kissick, W.A. (1990). Improved technique for determining complex permittivity with the transmission/reflection method. IEEE Trans. Microw. Theory Techn., 38(8), 1096-1103.
  • Barroso, J.J. & Hasar, U.C. (2012). Constitutive parameters of a metamaterial slab retrieved by the phase unwrapping method. J. Infrared Milli. Terahertz Waves, 33(2), 237-244.
  • Chen, H., Zhang, J., Bai, Y., Luo, Y., Ran, L., Jiang, Q., & Kong, J.A. (2006). Experimental retrieval of the effective parameters of metamaterials based on a waveguide method. Optics Express, 14(26), 12944-12949.
  • Chen, L.F., Ong, C.K., Neo, C.P., Varadan, V.V., & Varadan, V.K. (2004). Microwave electronics: Measurement and materials characterization. John Wiley & Sons.
  • Damaskos, N., Mack, R.B., Maffett, A.L., Parmon, W., & Uslenghi, P.L.E. (1984). The inverse problem for biaxial materials. IEEE Trans. Microw. Theory Techn., 32(4), 400-405.
  • Hasar, U.C., Barroso, J.J., Sabah, C., Kaya, Y., & Ertugrul, M. (2013). Stepwise technique for accurate and unique retrieval of electromagnetic properties of bianisotropic metamaterials. J. Opt. Soc. Am. B, 30(4), 1058-1068.
  • Hasar, U.C., Barroso, J.J., Karacali, T., & Ertugrul, M. (2015). Reference-plane-invariant and thickness- and branch-index-independent retrieval of effective parameters of bi-anisotropic metamaterials. AIP Adv., 5, 017123.
  • Hasar, U.C., Muratoglu, A., Bute, M., Barroso, J.J., & Ertugrul, M. (2017). Effective constitutive parameters retrieval method for bianisotropic metamaterials using waveguide measurements. IEEE Trans. Microw. Theory Techn., 65(5), 1488-1497.
  • Hasar, U.C. (2018). Self-calibrating transmission-reflection technique for constitutive parameters retrieval of materials. IEEE Trans. Microw. Theory Techn., 66(2), 1081-1089.
  • Hasar, U.C. & Ozturk, G. (2018). Note: Parameter extraction of samples without the direct application of the passivity principle from reference-plane-invariant measurements. Rev. Sci. Instrum., 89, 076104.
  • Hasar, U.C., Yildiz, G., Bute, M., & Muratoglu, A. (2018). Reference-plane-invariant waveguide method for electromagnetic characterization of bi-axial bianisotropic metamaterials. Sens. Actuators A Phys., 283, 141-150.
  • Hawro, P., Kwater, T., Pekala, R., & Twarog, B. (2019). Soft sensor with adaptive algorithm for filter gain correction in the online monitoring system of a polluted river. Applied Sciences, 9(9), 1883.
  • Jablonskas, D., Lapinskas, S., Rudys, S., Ivanov, M., & Banys, J. (2017). Full-wave finite space model of open-ended coaxial line for dielectric spectroscopy of liquids. Rev. Sci. Instrum., 88(8), 084703.
  • Jha, A.K. & Akhtar, M.J. (2014). A generalized rectangular cavity approach for determination of complex permittivity of materials. IEEE Trans. Instrum. Meas., 63(11), 2632-2641.
  • Siddiqui, O.F., Mojahedi, M., & Eleftheriades, G.V. (2003). Periodically loaded transmission line with effective negative refractive index and negative group velocity. IEEE Trans. Antennas Propag., 51(10), 2619-2625.
  • Xu, X. (2018). Double waveguide method to retrieve the electromagnetic parameters of biaxial anisotropic materials. Electron. Lett., 54(21), 1224–1226.
Toplam 19 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yunus Kaya 0000-0002-2380-5915

Yayımlanma Tarihi 31 Ağustos 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 25

Kaynak Göster

APA Kaya, Y. (2021). Feasible Waveguide Method for Obtaining Electromagnetic Properties of Biaxial Bianisotropic Materials with Strong Magneto-Electric Coupling. Avrupa Bilim Ve Teknoloji Dergisi(25), 493-497. https://doi.org/10.31590/ejosat.894691