Araştırma Makalesi
BibTex RIS Kaynak Göster

Antimicrobial Activity of Algal Extracts Against Foodborne Pathogens

Yıl 2021, Sayı: 27, 36 - 43, 30.11.2021
https://doi.org/10.31590/ejosat.931091

Öz

Algal biotechnology has been gaining increased attention to be evaluated in pharmaceutical and nutraceutical industries. Since proteins, carbohydrates, fatty acids, vitamins, minerals, pigments and many other important metabolites accumulate in their cells, algae are used by humans as the main nutritional support and food additive for various purposes. Algal bioactive compounds such as oleic acid, linoleic acid, palmitoleic acid, vitamin E, β-carotene, lutein and zeaxanthin have antimicrobial, antioxidant, antifungal and antiviral properties and play an important role in the reduction and prevention of foodborne diseases. Bioactive compounds of microalgae should be investigated in order to develop new pharmaceuticals and to provide chemical and pharmacological innovation. Various microalgae extracts are known to have in-vitro antimicrobial activity against pathogenic microorganisms. The aim of this study was to investigate the antifungal and antibacterial effects of the extracts of U. lactuca macroalgae and C. vulgaris, C. minutissima and C. protothecoides microalgae against Fusarium oxysporum fungal microorganisms and Mycobacterium smegmatis RUT, Proteus mirabilis BC6624 and Aeromonas hydrophila ATCC7965 bacterial microorganisms. The antimicrobial effects of the extracts were tested on fungal and bacterial microorganisms by using agar disk diffusion method. As a result of this study, the inhibition zone diameter of algae against F. oxysporum was found to be 53.00 mm for C. vulgaris; 59.00 mm for C. minutissima; 54.50 mm for C.protothecoides and 47 mm for U.lactuca at the dose of 20µl/petri on the 6th day of incubation. While P. mirabilis and M. smegmatis were resistant to the extracts of all macro - microalgae species used in the study, A. hydrofila were determined as the sensitive bacteria.

Kaynakça

  • Ak, İ. & Cirik, S. (2017). Blue-green algae (Cyanobacteria) and thermalism. Ege Journal of Fisheries and Aquatic Sciences, 34(2), 227-233.
  • Al-Reza, S.M., Rahman, A., Ahmed, Y. & Kang, S.C. (2010). Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts of Cestrum nocturnum L. Pesticide Biochemistry and Physiology, 96, 86–92.
  • Al-Ghanayem, A.A., Al-Sobeai, M.S., Alhussaini, S.M., Joseph, B. & Saadabi, A.M. (2017). Antifungal activity of Anastatica hierochuntica L. extracts against different groups of fungal pathogens: An in-vitro test. Romanian Biotechnological Letters, 23(6), 14135. doi: 10.26327/RBL2018.147.
  • Amaro, H.M., Guedes, A.C. & Malcata, F.X. (2011). Antimicrobial activities of macro - microalgae: an invited review. In: Méndez-Vilas A (ed). Science against microbial pathogens: communicating current research and technological advances. Formatex Ressearch Center Spain, 3, 1272-1280.
  • Castillo, F., Hernández, D., Gallegos, G., Rodríguez, R. & Aguilar, C.N. (2004). Antifungal properties of bioactive compounds from plants. Fungicides for Plant and Animal Diseases, 82-98.
  • Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K.C. (2009). Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International journal of molecular sciences, 10(2), 518-532.
  • de Morais, M.G., Da Silva Vaz, B., Demorais, E.G. & Vieira Costa, J.A. (2014). Biologically active metabolites synthesized by macro - microalgae. BioMed research international, 1, 15.
  • Du, Z., Li, Y., Wang, X., Wan, Y. & Chen, Q. et al. (2011). Microwave-assisted pyrolysis of macro - microalgae for biofuel production. Bioresource technology, 102(7), 4890-4896.
  • Dubois, M., Gilles, K.A. & Hamilton, J.K. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
  • Durlu Özkaya, F. & Cömert, M. (2008). Efficient factors for food poisoning. Turkish Bulletin of Hygiene and Experimental Biology, 65(3), 149-158.
  • Gowda, C. T., Purama, S. N. S., & Kammara, R. (2020). TLPdb: A Resource for Thaumatin-Like Proteins. The Protein Journal, 39(4), 301-307.
  • Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T. & Durmaz, Y. (2006). Algae antioxidants. E.U. J. Fisheries & Aquatic Science. 23 (1), 85-89.
  • Göksan, T., Durmaz, Y. & Gökpınar, Ş. (2003). Effects of light path lengths and initial culture density on the cultivation of chaetocerosmuelleri. Aquaculture. 217, 431-436.
  • Gülyurt, M.Ö., Özçimen, D. & İnan, B. (2016). Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. International journal of molecular sciences, 17(4), 579. doi:10.3390/ijms17040579.
  • Gupta, A.K., Baran, R. & Summerbell, R.C. (2000). Fusarium infections of the skin. Current opinion in infectious diseases, 13(2), 121-128.
  • Jacobsen, S.M., Stickler, D.J., Mobley, H.L.T. & Shirtliff, M.E. (2008). Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical microbiology reviews, 21(1), 26-59.
  • Koçer, A.T. & Özçimen, D. (2018). Investigation of the biogas production potential from algal wastes. Waste Management & Research, 36(11), 1100-1105.
  • Krzemińska, I., Nawrocka, A., Piasecka, A., Jagielski, P. & Tys, J. (2015). Cultivation of Chlorella protothecoides in photobioreactors: The combined impact of photoperiod and CO2 concentration. Engineering in Life Sciences, 15(5), 533-541.
  • Lisete, P., Elisabete, L., Ana, N.I., Massimo, M. & José, B. (2016). Health-promoting ingredients from four selected Azorean macroalgae. Food Research International, 89, 432-438.
  • Lowry, O.H., Rosebrough, N.J. & Farr, A.L. (1951). Protein measurement with the folin phenol reagent. Journal of biological chemistry, 193, 265-275.
  • Morgan, D.R., Johnson, P.C., Dupont, H.L., Satterwhıte, T.K. & Wood, L.V. (1985). Lack of correlation between known virulence properties of Aeromonas hydrophila and Enteropathogenicityfor humans. Infection and Immunity, 50(1), 62-65.
  • Özçimen, D. (2018). Investigation of antifungal effect of Chlorella protothecoides macro - microalgae oil against Botrytis cinerea and Aspergillus niger fungi. Journal of Tekirdag Agricultural Faculty, 15(2), 45-52.
  • Pérez, M.J., Falqué, E. & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs 14, 52.
  • Pierre-Audigier, C., Jouanguy, E., Lamhamedi, S., Altare, F., Rauzier, J. et al. (1997). Fatal disseminated Mycobacterium smegmatis infection in a child with inherited interferon y receptor deficiency. Clinical infectious diseases, 24(5), 982-984.
  • Soxhlet, F. (1879). Die gewichtsaiialytischeBestimmung des Milchfettes. Polytech. J. 232: 461.
  • Vehapi, M., İnan, B., Yimaz, A., Özçimen, D. (2020). Prevention of foodborne infections with algal biotechnology. II. International Enzyme and BioprocessDays EBDays 2020, İstanbul, Türkiye, 1 - 03 Eylül 2020, ss.26.
  • Vehapi, M., Koçer, A. T., Yılmaz, A., & Özçimen, D. (2019). Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Archives of Microbiology, 1-17.
  • Vehapi, M., Yilmaz, A. & Özçimen, D. (2018a). Antifungal activities of Chlorella vulgaris and Chlorella minutissima macro - microalgae cultivated in bold basal medium, wastewater and extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letters, 1-8.
  • Vehapi, M., Yilmaz, A. & Özcimen, D. (2018b). Investigation of antibacterial and antioxidant activities of some algae species. Journal of Biotechnology, 280, 80.
  • Yilmaz, A., Bozkurt, F., Cicek, P.K., Dertli, E., Durak, M.Z. et al. (2016b). A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospunzein–nanofiber mats loaded with curcumin. Innovative Food Science Emerging Technology, 37, 74-83.
  • Yilmaz, A., Ermis, E. & Boyraz, N. (2016a). Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot deseases Colletotrichum gleosporioides, Botrytis cinerea and Penicillium expansum. Journal of Food Safety and Quaility, 67, 113-148.

Algal Ekstraktların Gıda Kaynaklı Patojenlere Karşı Antimikrobiyal Aktivitesi

Yıl 2021, Sayı: 27, 36 - 43, 30.11.2021
https://doi.org/10.31590/ejosat.931091

Öz

Algal biyoteknoloji, ilaç ve nutrasötik endüstrilerde değerlendirilmek üzere gün geçtikçe daha fazla dikkat çekmektedir. Algler hücre içinde biriktirdikleri protein, karbonhidrat, yağ asitleri, vitamin, mineral, pigmentler ve daha pek çok önemli metabolitler ile insanlar tarafından besin desteği ve gıda katkı maddesi olarak değişik amaçlarla kullanılmaktadırlar. Oleik asit, linoleik asit, palmitoleik asit, E vitamini, β-karoten, lutein ve zeaksantin gibi algal biyoaktif bileşikler antimikrobiyal, antioksidan, antifungal ve antiviral özelliklere sahip olup, gıda kaynaklı hastalıkların azaltılması ve önlenmesinde önemli rol oynarlar. Yeni farmasötik maddeler geliştirmek ve kimyasal ve farmakolojik yenilik sağlamak için mikroalgal kaynaklı biyoaktif bileşikler araştırılmalıdır. Çeşitli mikroalg ekstraktının patojen mikroorganizmalara karşı in-vitro antimikrobiyal aktiviteye sahip olduğu bilinmektedir. Bu çalışmanın amacı, U. lactuca makroalg ve C. vulgaris, C. minutissima ve C. protothecoides mikroalg ekstraktlarının Fusarium oxysporum fungal mikroorganizmaya karşı antifungal ve Mycobacterium smegmatis RUT, Proteus mirabilis BC6624 ve Aeromonas hydrophila ATCC7965 bakteriyel mikroorganizmalara karşı antibakteriyal etkilerini araştırmaktır. Elde edilen ekstraktların antimikrobiyal etkileri agar disk difüzyon yöntemi kullanılarak fungal ve bakteriyel mikroorganizmalar üzerinde denenmiştir. Bu çalışmanın sonucu olarak, F. oxysporum'a karşı 6. inkübasyonun gününde 20µl / petri dozunda C. vulgaris ekstraktı için 53.00 mm; C. minutissima için 59.00 mm; C.protothecoides için 54.50 mm ve U.lactuca için 47 mm inhibisyon zon çapı gözlenmiştir. P. mirabilis ve M. smegmatis çalışmada kullanılan tüm makro - mikroalg türlerinin ekstraktlarına karşı dirençli bakteriler iken, A. hydrofila duyarlı bakteri olarak belirlenmiştir.

Kaynakça

  • Ak, İ. & Cirik, S. (2017). Blue-green algae (Cyanobacteria) and thermalism. Ege Journal of Fisheries and Aquatic Sciences, 34(2), 227-233.
  • Al-Reza, S.M., Rahman, A., Ahmed, Y. & Kang, S.C. (2010). Inhibition of plant pathogens in vitro and in vivo with essential oil and organic extracts of Cestrum nocturnum L. Pesticide Biochemistry and Physiology, 96, 86–92.
  • Al-Ghanayem, A.A., Al-Sobeai, M.S., Alhussaini, S.M., Joseph, B. & Saadabi, A.M. (2017). Antifungal activity of Anastatica hierochuntica L. extracts against different groups of fungal pathogens: An in-vitro test. Romanian Biotechnological Letters, 23(6), 14135. doi: 10.26327/RBL2018.147.
  • Amaro, H.M., Guedes, A.C. & Malcata, F.X. (2011). Antimicrobial activities of macro - microalgae: an invited review. In: Méndez-Vilas A (ed). Science against microbial pathogens: communicating current research and technological advances. Formatex Ressearch Center Spain, 3, 1272-1280.
  • Castillo, F., Hernández, D., Gallegos, G., Rodríguez, R. & Aguilar, C.N. (2004). Antifungal properties of bioactive compounds from plants. Fungicides for Plant and Animal Diseases, 82-98.
  • Chinnasamy, S., Ramakrishnan, B., Bhatnagar, A. & Das, K.C. (2009). Biomass production potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. International journal of molecular sciences, 10(2), 518-532.
  • de Morais, M.G., Da Silva Vaz, B., Demorais, E.G. & Vieira Costa, J.A. (2014). Biologically active metabolites synthesized by macro - microalgae. BioMed research international, 1, 15.
  • Du, Z., Li, Y., Wang, X., Wan, Y. & Chen, Q. et al. (2011). Microwave-assisted pyrolysis of macro - microalgae for biofuel production. Bioresource technology, 102(7), 4890-4896.
  • Dubois, M., Gilles, K.A. & Hamilton, J.K. (1956). Colorimetric method for determination of sugars and related substances. Analytical chemistry, 28(3), 350-356.
  • Durlu Özkaya, F. & Cömert, M. (2008). Efficient factors for food poisoning. Turkish Bulletin of Hygiene and Experimental Biology, 65(3), 149-158.
  • Gowda, C. T., Purama, S. N. S., & Kammara, R. (2020). TLPdb: A Resource for Thaumatin-Like Proteins. The Protein Journal, 39(4), 301-307.
  • Gökpınar, Ş., Koray, T., Akçiçek, E., Göksan, T. & Durmaz, Y. (2006). Algae antioxidants. E.U. J. Fisheries & Aquatic Science. 23 (1), 85-89.
  • Göksan, T., Durmaz, Y. & Gökpınar, Ş. (2003). Effects of light path lengths and initial culture density on the cultivation of chaetocerosmuelleri. Aquaculture. 217, 431-436.
  • Gülyurt, M.Ö., Özçimen, D. & İnan, B. (2016). Biodiesel production from Chlorella protothecoides oil by microwave-assisted transesterification. International journal of molecular sciences, 17(4), 579. doi:10.3390/ijms17040579.
  • Gupta, A.K., Baran, R. & Summerbell, R.C. (2000). Fusarium infections of the skin. Current opinion in infectious diseases, 13(2), 121-128.
  • Jacobsen, S.M., Stickler, D.J., Mobley, H.L.T. & Shirtliff, M.E. (2008). Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clinical microbiology reviews, 21(1), 26-59.
  • Koçer, A.T. & Özçimen, D. (2018). Investigation of the biogas production potential from algal wastes. Waste Management & Research, 36(11), 1100-1105.
  • Krzemińska, I., Nawrocka, A., Piasecka, A., Jagielski, P. & Tys, J. (2015). Cultivation of Chlorella protothecoides in photobioreactors: The combined impact of photoperiod and CO2 concentration. Engineering in Life Sciences, 15(5), 533-541.
  • Lisete, P., Elisabete, L., Ana, N.I., Massimo, M. & José, B. (2016). Health-promoting ingredients from four selected Azorean macroalgae. Food Research International, 89, 432-438.
  • Lowry, O.H., Rosebrough, N.J. & Farr, A.L. (1951). Protein measurement with the folin phenol reagent. Journal of biological chemistry, 193, 265-275.
  • Morgan, D.R., Johnson, P.C., Dupont, H.L., Satterwhıte, T.K. & Wood, L.V. (1985). Lack of correlation between known virulence properties of Aeromonas hydrophila and Enteropathogenicityfor humans. Infection and Immunity, 50(1), 62-65.
  • Özçimen, D. (2018). Investigation of antifungal effect of Chlorella protothecoides macro - microalgae oil against Botrytis cinerea and Aspergillus niger fungi. Journal of Tekirdag Agricultural Faculty, 15(2), 45-52.
  • Pérez, M.J., Falqué, E. & Domínguez, H. (2016). Antimicrobial action of compounds from marine seaweed. Marine Drugs 14, 52.
  • Pierre-Audigier, C., Jouanguy, E., Lamhamedi, S., Altare, F., Rauzier, J. et al. (1997). Fatal disseminated Mycobacterium smegmatis infection in a child with inherited interferon y receptor deficiency. Clinical infectious diseases, 24(5), 982-984.
  • Soxhlet, F. (1879). Die gewichtsaiialytischeBestimmung des Milchfettes. Polytech. J. 232: 461.
  • Vehapi, M., İnan, B., Yimaz, A., Özçimen, D. (2020). Prevention of foodborne infections with algal biotechnology. II. International Enzyme and BioprocessDays EBDays 2020, İstanbul, Türkiye, 1 - 03 Eylül 2020, ss.26.
  • Vehapi, M., Koçer, A. T., Yılmaz, A., & Özçimen, D. (2019). Investigation of the antifungal effects of algal extracts on apple-infecting fungi. Archives of Microbiology, 1-17.
  • Vehapi, M., Yilmaz, A. & Özçimen, D. (2018a). Antifungal activities of Chlorella vulgaris and Chlorella minutissima macro - microalgae cultivated in bold basal medium, wastewater and extract water against Aspergillus niger and Fusarium oxysporum. Romanian Biotechnological Letters, 1-8.
  • Vehapi, M., Yilmaz, A. & Özcimen, D. (2018b). Investigation of antibacterial and antioxidant activities of some algae species. Journal of Biotechnology, 280, 80.
  • Yilmaz, A., Bozkurt, F., Cicek, P.K., Dertli, E., Durak, M.Z. et al. (2016b). A novel antifungal surface-coating application to limit postharvest decay on coated apples: molecular, thermal and morphological properties of electrospunzein–nanofiber mats loaded with curcumin. Innovative Food Science Emerging Technology, 37, 74-83.
  • Yilmaz, A., Ermis, E. & Boyraz, N. (2016a). Investigation of in vitro and in vivo anti-fungal activities of different plant essential oils against postharvest apple rot deseases Colletotrichum gleosporioides, Botrytis cinerea and Penicillium expansum. Journal of Food Safety and Quaility, 67, 113-148.
Toplam 31 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Meyrem Vehapi 0000-0001-8235-3552

Benan İnan 0000-0002-2315-3099

Azime Yılmaz 0000-0002-9470-4310

Didem Ozcimen 0000-0003-2483-7617

Erken Görünüm Tarihi 29 Temmuz 2021
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 27

Kaynak Göster

APA Vehapi, M., İnan, B., Yılmaz, A., Ozcimen, D. (2021). Antimicrobial Activity of Algal Extracts Against Foodborne Pathogens. Avrupa Bilim Ve Teknoloji Dergisi(27), 36-43. https://doi.org/10.31590/ejosat.931091