Araştırma Makalesi
BibTex RIS Kaynak Göster

Ferrokrom Atıklarının Tehlikeli Altı Değerlikli Krom İçeriği Açısından İncelenmesi

Yıl 2021, Sayı: 27, 204 - 209, 30.11.2021
https://doi.org/10.31590/ejosat.952386

Öz

Bu çalışmada, ferrokrom cürufu (FS) ve elektrik-ark fırını tozu (EAFD) numuneleri esas olarak X-ışını fotoelektron spektroskopi (XPS) analizi ile tehlikeli altı değerlikli krom içerikleri açısından incelenmiştir. Deneysel sonuçlara göre, magnezyum-silikat, hem FS hem de EAFD numunelerinin ana çerçevesini oluşturmaktadır. Yüksek kristalli FS, spinel fazlar olarak %3,11 Cr2O3 içerirken, bu bileşen EAFD içerisinde çok daha yüksektir (%15,44). Genel XPS spektrumları, her iki numunenin de esas olarak O, Mg ve Si elementlerinden oluştuğunu göstermektedir. Ek olarak, FS ayrıca alüminyum içerirken, karbon, kalsiyum ve potasyum EAFD için diğer ana elementlerdir. 577-589 eV aralığında görünen pikler, numunelerin krom içeriğini doğrulamaktadır. Ayrıca, 1022 ve 1045 eV'de ortaya çıkan pikler, EAFD'nin çinko içeriğine işaret etmektedir. XPS atom oranına göre, FS ve EAFD'nin Cr içerikleri sırasıyla %0,505 ve %0,987 olarak elde edilirken, EAFD ayrıca %2,594 Zn içerir. Ayrıntılı XPS analizi, kromun 2p orbitallerinde üç değerlikli ve altı değerlikli formlar olmak üzere iki oksidasyon durumunda bulunduğunu göstermektedir. Spesifik olarak, 2p3/2 orbitalleri için üç değerlikli ve altı değerlikli krom sırasıyla 577,1 ve 579,2 eV'de, 2p1/2 orbitalleri için ise 586,9 ve 588,9 eV'de belirlenmiştir. Ayrıca, bu piklerin karşılık gelen şiddetleri EAFD için çok daha yüksektir. Pik şiddetleri karşılaştırılarak, Cr (VI) nispi oranları FS ve EAFD için sırasıyla %49,44 ve %49,53 olarak hesaplanmıştır. Liç testleri, Cr hariç incelenen tüm metallerin çözünürlüklerinin, tehlikeli atık toksisite sınırlarının çok altında ve hatta tehlikeli olmayan atık aralıklarının dahi altında olduğunu göstermektedir. Spesifik olarak, filtratların krom içerikleri FS ve EAFD için sırasıyla 0,862 ve 268,050 mg/l olarak belirlenmiştir. Kromun toksisite limitleri göz önüne alındığında, EAFD kesinlikle çok tehlikeli bir atık olarak etiketlenebilirken, FS ise tehlikesiz atık sınırları içindedir. Sonuç olarak, özellikle toz numunesi için, tehlikeli altı değerlikli krom içeriğinin düzenli depolama sahalarına atılmadan önce durağan üç değerlikli formlara indirgenmesi gerektiği söylenebilir.

Destekleyen Kurum

ETİ KROM A.Ş.

Kaynakça

  • Acar, İ. (2020). Sintering properties of olivine and its utilization potential as a refractory raw material: Mineralogical and microstructural investigations. Ceramics International, 46(18, Part A), 28025-28034. doi:https://doi.org/10.1016/j.ceramint.2020.07.297
  • Acar, I., & Atalay, M. U. (2013). Characterization of sintered class F fly ashes. Fuel, 106, 195-203. doi:https://doi.org/10.1016/j.fuel.2012.10.057
  • Arnold, M. C., de Vargas, A. S., & Bianchini, L. (2017). Study of electric-arc furnace dust (EAFD) in fly ash and rice husk ash-based geopolymers. Advanced Powder Technology, 28(9), 2023-2034. doi:https://doi.org/10.1016/j.apt.2017.05.007
  • Bulut, U., Ozverdi, A., & Erdem, M. (2009). Leaching behavior of pollutants in ferrochrome arc furnace dust and its stabilization/solidification using ferrous sulphate and Portland cement. Journal of Hazardous Materials, 162(2-3), 893-898. doi:10.1016/j.jhazmat.2008.05.114
  • Cholake, S. T., Farzana, R., Numata, T., & Sahajwalla, V. (2018). Transforming electric arc furnace waste into value added building products. Journal of Cleaner Production, 171, 1128-1139. doi:https://doi.org/10.1016/j.jclepro.2017.10.084
  • Erdoğan, S. T. (2011). Öğütülmüş Ferrokrom Cürufu Kullanılarak Jeopolimer Üretimi. Paper presented at the 9th National Congress on Concrete, İzmir.
  • Fares, A. I., Sohel, K., Al-Jabri, K., & Al-Mamun, A. (2021). Characteristics of ferrochrome slag aggregate and its uses as a green material in concrete – A review. Construction and Building Materials, 294, 123552. doi:10.1016/j.conbuildmat.2021.123552
  • Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D., & Vale, J. (2009). Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel, 88(7), 1185-1193. doi:https://doi.org/10.1016/j.fuel.2008.01.021
  • Gencel, O., Sutcu, M., Erdogmus, E., Koc, V., Cay, V. V., & Gok, M. S. (2013). Properties of bricks with waste ferrochromium slag and zeolite. Journal of Cleaner Production, 59, 111-119. doi:10.1016/j.jclepro.2013.06.055
  • Greunz, T., Steinberger, R., Strauß, B., & Stifter, D. (2018). Reduction of hexavalent chromium embedded in organic insulation and corrosion inhibition layers during X-ray photoelectron spectroscopy (XPS) measurements. Corrosion Science, 143, 39-45. doi:10.1016/j.corsci.2018.08.031
  • Jena, S., & Panigrahi, R. (2021). Feasibility study of the properties of geopolymer concrete with ferrochrome slag and silica fume. Materials Today: Proceedings, 38, 2476-2480. doi:10.1016/j.matpr.2020.07.510
  • Kumar B, C., Yaragal, S. C., & Das, B. B. (2020). Ferrochrome ash – Its usage potential in alkali activated slag mortars. Journal of Cleaner Production, 257, 120577. doi:https://doi.org/10.1016/j.jclepro.2020.120577
  • Mishra, J., Kumar Das, S., Krishna, R. S., Nanda, B., Kumar Patro, S., & Mohammed Mustakim, S. (2020). Synthesis and characterization of a new class of geopolymer binder utilizing ferrochrome ash (FCA) for sustainable industrial waste management. Materials Today: Proceedings, 33, 5001-5006. doi:10.1016/j.matpr.2020.02.832
  • Murphy, V., Tofail, S. A. M., Hughes, H., & McLoughlin, P. (2009). A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis. Chemical Engineering Journal, 148(2-3), 425-433. doi:10.1016/j.cej.2008.09.029
  • Nath, S. K. (2018). Geopolymerization behavior of ferrochrome slag and fly ash blends. Construction and Building Materials, 181, 487-494. doi:https://doi.org/10.1016/j.conbuildmat.2018.06.070
  • Panda, C. R., Mishra, K. K., Panda, K. C., Nayak, B. D., & Nayak, B. B. (2013). Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Construction and Building Materials, 49, 262-271. doi:10.1016/j.conbuildmat.2013.08.002
  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., . . . Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513-533. doi:10.1016/j.chemosphere.2017.03.074

Investigation of Ferrochromium Wastes for their Hazardous Hexavalent Chromium Content

Yıl 2021, Sayı: 27, 204 - 209, 30.11.2021
https://doi.org/10.31590/ejosat.952386

Öz

In this study, ferrochromium slag (FS) and electric-arc furnace dust (EAFD) samples were examined for their hazardous hexavalent chromium content mainly by X-ray photoelectron spectroscopy (XPS) analysis. According to the experimental results, magnesium-silicate constitutes the main framework of both FS and EAFD samples. Highly crystalline FS contains 3.11%Cr2O3 as spinel phases while this constituent is much higher, 15.44%, in EAFD. The general XPS spectra show that both samples mainly consist of O, Mg and Si elements. In addition, FS also includes aluminum while carbon, calcium and potassium are the other major elements for EAFD. The peaks appeared in the range of 577-589 eV confirm chromium content of the samples. Besides, the peaks appeared at 1022 and 1045 eV point out zinc content of EAFD. Based on the XPS atomic ratio, Cr contents of FS and EAFD were obtained as 0.505 and 0.987%, respectively while EAFD further contains 2.594% Zn. The detailed XPS analysis indicates that chromium exists as two oxidation states, trivalent and hexavalent forms at 2p orbitals. Specifically, for 2p3/2 orbitals, trivalent and hexavalent chromium were assigned at 577.1 and 579.2 eV, respectively whereas 586.9 and 588.9 eV for 2p1/2 orbitals. Furthermore, the corresponding intensities of these peaks are much higher for EAFD. By comparing the peak intensities, the relative proportions of Cr (VI) were calculated as 49.44 and 49.53% for FS and EAFD, respectively. The leaching tests show that solubilities of all the metals examined except Cr are far below the toxicity limits for hazardous waste and even below the ranges of non-hazardous waste. Specifically, chromium contents of the filtrates were determined as 0.862 and 268.050 mg/l for FS and EAFD, respectively. Considering the toxicity limits of chromium, EAFD can be surely labeled as a highly hazardous waste whereas, on the other hand, FS is within the limits of non-hazardous waste. In conclusion, it can be said that the hazardous hexavalent chromium content must be reduced to immobile trivalent forms for the dust sample prior to disposed in landfills.

Kaynakça

  • Acar, İ. (2020). Sintering properties of olivine and its utilization potential as a refractory raw material: Mineralogical and microstructural investigations. Ceramics International, 46(18, Part A), 28025-28034. doi:https://doi.org/10.1016/j.ceramint.2020.07.297
  • Acar, I., & Atalay, M. U. (2013). Characterization of sintered class F fly ashes. Fuel, 106, 195-203. doi:https://doi.org/10.1016/j.fuel.2012.10.057
  • Arnold, M. C., de Vargas, A. S., & Bianchini, L. (2017). Study of electric-arc furnace dust (EAFD) in fly ash and rice husk ash-based geopolymers. Advanced Powder Technology, 28(9), 2023-2034. doi:https://doi.org/10.1016/j.apt.2017.05.007
  • Bulut, U., Ozverdi, A., & Erdem, M. (2009). Leaching behavior of pollutants in ferrochrome arc furnace dust and its stabilization/solidification using ferrous sulphate and Portland cement. Journal of Hazardous Materials, 162(2-3), 893-898. doi:10.1016/j.jhazmat.2008.05.114
  • Cholake, S. T., Farzana, R., Numata, T., & Sahajwalla, V. (2018). Transforming electric arc furnace waste into value added building products. Journal of Cleaner Production, 171, 1128-1139. doi:https://doi.org/10.1016/j.jclepro.2017.10.084
  • Erdoğan, S. T. (2011). Öğütülmüş Ferrokrom Cürufu Kullanılarak Jeopolimer Üretimi. Paper presented at the 9th National Congress on Concrete, İzmir.
  • Fares, A. I., Sohel, K., Al-Jabri, K., & Al-Mamun, A. (2021). Characteristics of ferrochrome slag aggregate and its uses as a green material in concrete – A review. Construction and Building Materials, 294, 123552. doi:10.1016/j.conbuildmat.2021.123552
  • Fernández Pereira, C., Luna, Y., Querol, X., Antenucci, D., & Vale, J. (2009). Waste stabilization/solidification of an electric arc furnace dust using fly ash-based geopolymers. Fuel, 88(7), 1185-1193. doi:https://doi.org/10.1016/j.fuel.2008.01.021
  • Gencel, O., Sutcu, M., Erdogmus, E., Koc, V., Cay, V. V., & Gok, M. S. (2013). Properties of bricks with waste ferrochromium slag and zeolite. Journal of Cleaner Production, 59, 111-119. doi:10.1016/j.jclepro.2013.06.055
  • Greunz, T., Steinberger, R., Strauß, B., & Stifter, D. (2018). Reduction of hexavalent chromium embedded in organic insulation and corrosion inhibition layers during X-ray photoelectron spectroscopy (XPS) measurements. Corrosion Science, 143, 39-45. doi:10.1016/j.corsci.2018.08.031
  • Jena, S., & Panigrahi, R. (2021). Feasibility study of the properties of geopolymer concrete with ferrochrome slag and silica fume. Materials Today: Proceedings, 38, 2476-2480. doi:10.1016/j.matpr.2020.07.510
  • Kumar B, C., Yaragal, S. C., & Das, B. B. (2020). Ferrochrome ash – Its usage potential in alkali activated slag mortars. Journal of Cleaner Production, 257, 120577. doi:https://doi.org/10.1016/j.jclepro.2020.120577
  • Mishra, J., Kumar Das, S., Krishna, R. S., Nanda, B., Kumar Patro, S., & Mohammed Mustakim, S. (2020). Synthesis and characterization of a new class of geopolymer binder utilizing ferrochrome ash (FCA) for sustainable industrial waste management. Materials Today: Proceedings, 33, 5001-5006. doi:10.1016/j.matpr.2020.02.832
  • Murphy, V., Tofail, S. A. M., Hughes, H., & McLoughlin, P. (2009). A novel study of hexavalent chromium detoxification by selected seaweed species using SEM-EDX and XPS analysis. Chemical Engineering Journal, 148(2-3), 425-433. doi:10.1016/j.cej.2008.09.029
  • Nath, S. K. (2018). Geopolymerization behavior of ferrochrome slag and fly ash blends. Construction and Building Materials, 181, 487-494. doi:https://doi.org/10.1016/j.conbuildmat.2018.06.070
  • Panda, C. R., Mishra, K. K., Panda, K. C., Nayak, B. D., & Nayak, B. B. (2013). Environmental and technical assessment of ferrochrome slag as concrete aggregate material. Construction and Building Materials, 49, 262-271. doi:10.1016/j.conbuildmat.2013.08.002
  • Shahid, M., Shamshad, S., Rafiq, M., Khalid, S., Bibi, I., Niazi, N. K., . . . Rashid, M. I. (2017). Chromium speciation, bioavailability, uptake, toxicity and detoxification in soil-plant system: A review. Chemosphere, 178, 513-533. doi:10.1016/j.chemosphere.2017.03.074
Toplam 17 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

İlker Acar 0000-0001-9439-1580

Erken Görünüm Tarihi 29 Temmuz 2021
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 27

Kaynak Göster

APA Acar, İ. (2021). Investigation of Ferrochromium Wastes for their Hazardous Hexavalent Chromium Content. Avrupa Bilim Ve Teknoloji Dergisi(27), 204-209. https://doi.org/10.31590/ejosat.952386