Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Mechanical Properties of PLA and ABS Based Structures Produced by Fused Deposition Modelling Additive Manufacturing

Yıl 2021, Sayı: 27, 802 - 809, 30.11.2021
https://doi.org/10.31590/ejosat.983317

Öz

Fused deposition modelling (FDM) additive manufacturing is a technology that works horizontally and vertically in which an extrusion nozzle moves on a building platform. Knowing the mechanical properties of the parts manufactured by the FDM method is very important for the parts to work efficiently in places of usage. Additive manufacturing with the FDM method is widespread due to its advantages such as easy-to-use features, low cost, flexibility in material options, and less processing after printing. Two different polymer materials (PLA and ABS), tensile, compression test and 3 point bending tests, a total of 36 test specimens were printed on the FDM type printer. The samples obtained were subjected to mechanical tests to determine their mechanical properties. As a result of the study, the effect of the samples' mechanical properties produced by the PLA and ABS-based FDM method was examined and compared with the literature. The results showed that the mechanical properties of PLA and ABS material are highly dependent on the filling density. While the mechanical properties were improved by the increase in filling density rate, the print speed has been decreased. The research findings obtained are of a nature that will guide the optimization of the FDM method's parts in terms of mechanical properties.

Kaynakça

  • Abeykoon, C., Sri-Amphorn, P., & Fernando, A. (2020). Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3(3), 284-297.
  • Allevi, G., Capponi, L., Castellini, P., Chiariotti, P., Docchio, F., Freni, F., ... & Tomasini, E. P. (2019). Investigating additive manufactured lattice structures: a multi-instrument approach. IEEE Transactions on Instrumentation and Measurement, 69(5), 2459-2467.
  • Boğa, C., Seyedzavvar, M., & Zehir, B. (2021). Experimental investigation on the effects of internal architecture on the mechanical properties of 3D printed PLA components. European Journal of Science and Technology, (24), 119-124.
  • Burns, M., Rapid Prototyping: System Selection & Implementation Guide, Managent Rountable, Massachusetts, 1991.
  • Caminero, M. Á., Chacon J. M. et al. (2019). Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture, Polymers, 11 (5), 799.
  • Celebi, A., Gulizia, S., Doblin, C., Fraser, D., Prentice, L. (2020). Characterization of tantalum–titanium powders with universal powder bed (UPB) system for electron beam melting Process. Russian Journal of Non-Ferrous Metals, 61(3), 346-353.
  • Çelik, S., & Gür, Y. (2021). The effect of printing parameters on mechanical properties of ABS and carbon fibre reinforced ABS composites fabricated with 3D printer. Journal of Balıkesir University Institute of Science and Technology, 23(1), 200-209.
  • Çevik, Z. A., Özsoy, K., Erçetin, A. (2021). The effect of machining process on the physical and surface morphology of Ti6Al4V specimens produced through powder bed fusion additive manufacturing, International Journal of 3D Printing Technologies and Digital Industry, 5(2), 187-194.
  • Damodaran, A., Sugavaneswaran, M. & Lessard, L. (2021). An overview of additive manufacturing technologies for musical wind instruments. SN Applied Sciences, 3, 162.
  • Demiray M.A., Şekerci B., Saltık O., Kayacan M.C. (2018). Eklemeli İmalat Yöntemlerinde Kullanılan Malzemeler. 3. Uluslararası 3B Baskı Teknolojileri ve Dijital Endüstri Kongresi, s.93.
  • Ertugrul, I., Akkus, N., Aygul, E., Yalcınkaya, S. (2020). MEMS Fabrication Using 2PP Technique Based 3D Printer. International Journal of 3D Printing Technologies and Digital Industry, 4(1), 12-17.
  • Gardan, J. (2016). Additive manufacturing technologies: state of the art and trends. International Journal of Production Research, 54(10), 3118-3132.
  • Grabowik, C., Kalinowski, K., Ćwikła, G., Paprocka, I., & Kogut, P. (2017). Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. In MATEC Web of Conferences, 112, Page 04017. EDP Sciences.
  • Gür, Y. (2021). Fabrication of an anatomical foot bone structure from computerised tomography data by an ultraviolet led 3D printer. European Journal of Science and Technology, (22), 128-133.
  • Jiang, J., Hu, G., Li, X., Xu, X., Zheng, P., & Stringer, J. (2019). Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network. Virtual and Physical Prototyping, 14(3), 253-266.
  • Jiang, J.; Xu, X.; Stringer, J. Support Structures for Additive Manufacturing: A Review. J. Manuf. Mater. Process. 2018, 2, 64.
  • Kaptan, A., & Kartal, F. (2020). The effect of fill rate on mechanical properties of PLA printed samples. Journal of the Institute of Science and Technology, 10(3), 1919-1927.
  • Kuznetsov, V. E., Solonin, A. N., Urzhumtsev, O. D., Schilling, R., & Tavitov, A. G. (2018). Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers, 10(3), 313.
  • Khuong, T. L., Gang, Z., Farid, M., Yu, R., Sun, Z. Z., & Rizwan, M. (2014). Tensile strength and flexural strength testing of acrylonitrile butadiene styrene (ABS) materials for biomimetic robotic applications. In Journal of Biomimetics, Biomaterials and Biomedical Engineering, 20, 11-21.
  • Küçükoğlu, A., Yüce, C., Karpat, F., Okar, H. İ., Sözer, İ. E., & Kurt, N. (2021). Investigation of the process parameters on the laser transmission welding of PMMA and ABS materials. Uludağ University Journal of the Faculty of Engineering, 26(2), 481-492.
  • Nagesha, B. K., Dhinakaran, V., Shree, M. V., Kumar, K. M., Chalawadi, D., & Sathish, T. (2020). Review on characterization and impacts of the lattice structure in additive manufacturing. Materials Today: Proceedings, 21, 916-919.
  • Palic, N., Zivic, F. et al. (2019). Mechanical behaviour of small load bearing structures fabricated by 3D printing, Applied Engineering Letters: Journal of Engineering and Applied Sciences, 4, 88-92.
  • Pilipović, A., Raos, P., & Šercer, M. (2009). Experimental analysis of properties of materials for rapid prototyping. The International Journal of Advanced Manufacturing Technology, 40(1), 105-115.
  • Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3(1), 81-90.
  • Stratasys, 1998. Erişim Tarihi: 23.11.2018 http://www.stratasys.com/Technology.aspx
  • Svensson, E., (2017). Material characterization of 3D-printed energy-absorbent polymers inspired by nature, Master Thesis, Chalmers University of Technology Department of Materials and Manufacturing Technology, Sweden.
  • Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials today, 21(1), 22-37.
  • Yeşil, Ö., & Mazanoğlu, K. (2018). Effects of filling ratio, orientation and print temperature on bending properties of 3d printed PLA beams. Usak University Journal of Engineering Sciences, 1(2), 66-75.

Eriyik Yığma Modellemesi Eklemeli İmalat ile Üretilen PLA ve ABS Esaslı Yapıların Mekanik Özelliklerinin Karşılaştırılması

Yıl 2021, Sayı: 27, 802 - 809, 30.11.2021
https://doi.org/10.31590/ejosat.983317

Öz

Eriyik yığma Modellemesi (FDM), bir ekstrüzyon nozulunun bir inşa platformu üzerinde hareket ettiği yatay ve dikey olarak çalışan bir teknolojidir. FDM yöntemiyle üretilen parçaların mekanik özelliklerinin bilinmesi, parçaların kullanım yerlerinde verimli çalışabilmesi için çok önemlidir. FDM yöntemi ile eklemeli imalat, kolay kullanım özellikleri, düşük maliyeti, malzeme seçeneklerinde esneklik ve baskı sonrası daha az işlem yapılması gibi avantajları nedeniyle yaygın olarak kullanılmaktadır. FDM tipi yazıcıda iki farklı polimer malzeme (PLA ve ABS), çekme, basma testi ve 3 nokta eğilme testleri olmak üzere toplam 36 adet test numunesi basılmıştır. Elde edilen numuneler mekanik özelliklerini belirlemek için mekanik testlere tabi tutulmuştur. Çalışma sonucunda PLA ve ABS esaslı FDM yöntemi ile üretilen numunelerin mekanik özelliklerine etkisi incelenmiş ve literatür ile karşılaştırılmıştır. Elde edilen araştırma bulguları, FDM yönteminin parçalarının mekanik özellikler açısından optimizasyonuna rehberlik edecek niteliktedir.

Kaynakça

  • Abeykoon, C., Sri-Amphorn, P., & Fernando, A. (2020). Optimization of fused deposition modeling parameters for improved PLA and ABS 3D printed structures. International Journal of Lightweight Materials and Manufacture, 3(3), 284-297.
  • Allevi, G., Capponi, L., Castellini, P., Chiariotti, P., Docchio, F., Freni, F., ... & Tomasini, E. P. (2019). Investigating additive manufactured lattice structures: a multi-instrument approach. IEEE Transactions on Instrumentation and Measurement, 69(5), 2459-2467.
  • Boğa, C., Seyedzavvar, M., & Zehir, B. (2021). Experimental investigation on the effects of internal architecture on the mechanical properties of 3D printed PLA components. European Journal of Science and Technology, (24), 119-124.
  • Burns, M., Rapid Prototyping: System Selection & Implementation Guide, Managent Rountable, Massachusetts, 1991.
  • Caminero, M. Á., Chacon J. M. et al. (2019). Additive manufacturing of PLA-based composites using fused filament fabrication: Effect of graphene nanoplatelet reinforcement on mechanical properties, dimensional accuracy and texture, Polymers, 11 (5), 799.
  • Celebi, A., Gulizia, S., Doblin, C., Fraser, D., Prentice, L. (2020). Characterization of tantalum–titanium powders with universal powder bed (UPB) system for electron beam melting Process. Russian Journal of Non-Ferrous Metals, 61(3), 346-353.
  • Çelik, S., & Gür, Y. (2021). The effect of printing parameters on mechanical properties of ABS and carbon fibre reinforced ABS composites fabricated with 3D printer. Journal of Balıkesir University Institute of Science and Technology, 23(1), 200-209.
  • Çevik, Z. A., Özsoy, K., Erçetin, A. (2021). The effect of machining process on the physical and surface morphology of Ti6Al4V specimens produced through powder bed fusion additive manufacturing, International Journal of 3D Printing Technologies and Digital Industry, 5(2), 187-194.
  • Damodaran, A., Sugavaneswaran, M. & Lessard, L. (2021). An overview of additive manufacturing technologies for musical wind instruments. SN Applied Sciences, 3, 162.
  • Demiray M.A., Şekerci B., Saltık O., Kayacan M.C. (2018). Eklemeli İmalat Yöntemlerinde Kullanılan Malzemeler. 3. Uluslararası 3B Baskı Teknolojileri ve Dijital Endüstri Kongresi, s.93.
  • Ertugrul, I., Akkus, N., Aygul, E., Yalcınkaya, S. (2020). MEMS Fabrication Using 2PP Technique Based 3D Printer. International Journal of 3D Printing Technologies and Digital Industry, 4(1), 12-17.
  • Gardan, J. (2016). Additive manufacturing technologies: state of the art and trends. International Journal of Production Research, 54(10), 3118-3132.
  • Grabowik, C., Kalinowski, K., Ćwikła, G., Paprocka, I., & Kogut, P. (2017). Tensile tests of specimens made of selected group of the filament materials manufactured with FDM method. In MATEC Web of Conferences, 112, Page 04017. EDP Sciences.
  • Gür, Y. (2021). Fabrication of an anatomical foot bone structure from computerised tomography data by an ultraviolet led 3D printer. European Journal of Science and Technology, (22), 128-133.
  • Jiang, J., Hu, G., Li, X., Xu, X., Zheng, P., & Stringer, J. (2019). Analysis and prediction of printable bridge length in fused deposition modelling based on back propagation neural network. Virtual and Physical Prototyping, 14(3), 253-266.
  • Jiang, J.; Xu, X.; Stringer, J. Support Structures for Additive Manufacturing: A Review. J. Manuf. Mater. Process. 2018, 2, 64.
  • Kaptan, A., & Kartal, F. (2020). The effect of fill rate on mechanical properties of PLA printed samples. Journal of the Institute of Science and Technology, 10(3), 1919-1927.
  • Kuznetsov, V. E., Solonin, A. N., Urzhumtsev, O. D., Schilling, R., & Tavitov, A. G. (2018). Strength of PLA components fabricated with fused deposition technology using a desktop 3D printer as a function of geometrical parameters of the process. Polymers, 10(3), 313.
  • Khuong, T. L., Gang, Z., Farid, M., Yu, R., Sun, Z. Z., & Rizwan, M. (2014). Tensile strength and flexural strength testing of acrylonitrile butadiene styrene (ABS) materials for biomimetic robotic applications. In Journal of Biomimetics, Biomaterials and Biomedical Engineering, 20, 11-21.
  • Küçükoğlu, A., Yüce, C., Karpat, F., Okar, H. İ., Sözer, İ. E., & Kurt, N. (2021). Investigation of the process parameters on the laser transmission welding of PMMA and ABS materials. Uludağ University Journal of the Faculty of Engineering, 26(2), 481-492.
  • Nagesha, B. K., Dhinakaran, V., Shree, M. V., Kumar, K. M., Chalawadi, D., & Sathish, T. (2020). Review on characterization and impacts of the lattice structure in additive manufacturing. Materials Today: Proceedings, 21, 916-919.
  • Palic, N., Zivic, F. et al. (2019). Mechanical behaviour of small load bearing structures fabricated by 3D printing, Applied Engineering Letters: Journal of Engineering and Applied Sciences, 4, 88-92.
  • Pilipović, A., Raos, P., & Šercer, M. (2009). Experimental analysis of properties of materials for rapid prototyping. The International Journal of Advanced Manufacturing Technology, 40(1), 105-115.
  • Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2012). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3(1), 81-90.
  • Stratasys, 1998. Erişim Tarihi: 23.11.2018 http://www.stratasys.com/Technology.aspx
  • Svensson, E., (2017). Material characterization of 3D-printed energy-absorbent polymers inspired by nature, Master Thesis, Chalmers University of Technology Department of Materials and Manufacturing Technology, Sweden.
  • Tofail, S. A., Koumoulos, E. P., Bandyopadhyay, A., Bose, S., O’Donoghue, L., & Charitidis, C. (2018). Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Materials today, 21(1), 22-37.
  • Yeşil, Ö., & Mazanoğlu, K. (2018). Effects of filling ratio, orientation and print temperature on bending properties of 3d printed PLA beams. Usak University Journal of Engineering Sciences, 1(2), 66-75.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Koray Özsoy 0000-0001-8663-4466

Ali Erçetin 0000-0002-7631-1361

Zihni Alp Çevik 0000-0003-3141-0160

Erken Görünüm Tarihi 29 Temmuz 2021
Yayımlanma Tarihi 30 Kasım 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 27

Kaynak Göster

APA Özsoy, K., Erçetin, A., & Çevik, Z. A. (2021). Comparison of Mechanical Properties of PLA and ABS Based Structures Produced by Fused Deposition Modelling Additive Manufacturing. Avrupa Bilim Ve Teknoloji Dergisi(27), 802-809. https://doi.org/10.31590/ejosat.983317

Cited By