Araştırma Makalesi
BibTex RIS Kaynak Göster

Ayarlanabilir Parça Uzunluklarına Sahip 3-Parçalı Fotonik Kristallerde Elektromanyetik Dalgaların Frekans Analizi

Yıl 2021, Sayı: 29, 311 - 316, 01.12.2021
https://doi.org/10.31590/ejosat.1019961

Öz

Bu çalışmada, üçü 3-parçalı ve biri 2-parçalı olmak üzere dört farklı fotonik kristal yapıda elektromanyetik dalga yayılımı frekansları incelenmektedir. Ayrıca, bu yapıların parça uzunluklarının ve malzeme özelliği parametrelerinin (ε, µ) elektromanyetik dalga frekansları üzerindeki etkileri araştırılmaktadır. Fotonik kristal yapılar tek boyutlu (1D) olup bu yapılara ait parçalar farklı uzunluklara sahiptir. Parça uzunluklarındaki farklılıklar elektromanyetik dalga frekanslarının ayarlanabilmesine olanak sağlamaktadır. Fotonik kristal yapıların her bir parçasının malzeme özelliği parametreleri x-ekseni doğrultusunda ve bu parametrelerin varsayılan değerleri teorik olarak 1'den 2'ye doğru değer alacak biçimde değişmektedir. Dört farklı fotonik kristal yapı için elde edilen elektromanyetik dalga frekanslarının ilk üç moduna ilişkin değerler birbirinden farklıdır. Elektromanyetik dalga frekanslarının en düşük değerleri, en kısa birinci ve ikinci parça uzunluğuna sahip birinci fotonik kristal yapı (S1) için elde edilmektedir.

Kaynakça

  • Alipour-Banaei, H., Serajmohammadi, S. & Mehdizadeh, F. (2017). All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik, 130, 1214-1221. http://dx.doi.org/10.1016/j.ijleo.2016.11.190
  • Askari, M., Hutchins, D., Thomas, P. J., Astolfi, L., Watson, R. L., Abdi, M., Ricci, M., Laureti, S., Nie, L., Freear, S., Wildman, R., Tuck, C., Clarke, M., Woods, E., & Clare, A. T. (2020). Additive manufacturing of metamaterials: A review, Additive Manufacturing, 36, 101562. http://dx.doi.org/10.1016/j.addma.2020.101562
  • Ayman, A., Prasad S. & Singh V. (2020). Tuning the band structures and electromagnetic density of modes in fused Silica slab by acoustic waves, Optik – International Journal for Light and Electron Optics, 204, 164105. http://dx.doi.org/10.1016/j.ijleo.2019.164105
  • Barrientos-Garcia, A., Sukhoivanov, I. A., Andre-Lucio, J. A., Hernandez-Garcia, J. C.., Ramos-Ortiz, G., Ibarra-Manzano, O. G., & Guryev, I. V. (2016). Numerical analysis of supercontinuum generation in photonic-crystal fibers with zero dispersion wavelengths in telecommunication windows, Optik, 127, 10981-10990. https://doi.org/10.1016/j.ijleo.2016.08.111
  • Basmaci, A. N. (2020). Characteristics of electromagnetic wave propagation in a segmented photonic waveguide, Journal of Optoelectronics and Advanced Materials, 22, 452-460.
  • Benhaddad, M., Kerrour, F., Benabbes O., & Saouli, A. (2019). A new photonic crystal fibre with low nonlinearity, low confinement loss and improved effective mode area, Ukrainian Journal of Physical Optics, 20, 47-53. https://doi.org/10.3116/16091833/20/2/47/2019
  • Bi, K., Wang, Q., Xu, J., Chen, L., Lan C., & Lei, M. (2021). All-dielectric metamaterial fabrication techniques, Advanced Optical Materials, 9, 2001474. https://doi.org/10.1002/adom.202001474
  • Busch, K., Freymann, G., Linden, S., Mingaleev, S. F., Tkeshelashvili, L. & Wegener, M. (2007). Periodic nanostructures for photonics. Physics Reports, 444, 101-202. https://doi.org/10.1016/j.physrep.2007.02.011
  • Chen, X.-D., Zhao, F.-L., Chen, M. & Dong, J.-W. (2017). Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation,” Physical Review B, 96, 020202(R).
  • Chung, K. H., Kato, T., Mito, S., Takagi, H., & Inoue, M. (2010). Fabrication and characteristics of one-dimensional magnetophotonic crystals for magneto-optic spatial light phase modulators, Journal of Applied Physics, 107, 09A930.
  • Delihacıoğlu, K. (2014). Chiral frequency selective surfaces comprised of multiple conducting strips per unit cell, IET Microwaves, Antennas & Propagation, 8, 621-626. https://doi.org/10.1049/iet-map.2013.0146
  • Dukata, A., & Waldemar, S. (2020). Transmission parameters of an anisotropic layered structure in the waveguide, SPIE Conference Proceedings, 11442, 114420A-1 - 114420A-17. https://doi.org/10.117/12.2565584
  • Gao, T., Sun, H., Hong, Y., & Qing, X. (2020). Hidden corrosion detection using laser ultrasonic guided waves with multi-frequency local wavenumber estimation, Ultrasonics, 108, 106182. https://doi.org/10.1016/j.ultras.2020.106182
  • Ginn, J. C. & Brener, I. (2012). Realizing optical magnetism from dielectric metamaterials, Physical Review Letters, 108, 097402. https://doi.org/10.1103/PhysRevLett.108.097402
  • Han, Y., Fei, H., Lin, H., Zhang, Y., Zhang, M., & Yang, Y. (2021). Design of broadband all-dielectric valley photonic crystals at telecommunication wavelength, Optics Communications, 488, 126847. https://doi.org/10.1016/j.optcom.2021.126847
  • Hassan, S., Alnasser, K., Lowell, D., & Lin, Y. (2019). Effects of photonic band structure and unit super-cell size in graded photonic super-crystal on broadband light absorption in silicon, Photonics, 6, 50. https://doi.org/10.3390/photonics6020050
  • Jahani, S., & Jacob, Z. (2016). All-dielectric metamaterials, Nature Nanotechnology, 11, 23-36. https://doi.org/10.1038/nnano.2015.304
  • Kaburcuk, F., & Elsherbeni, A. Z. (2021). Efficient analysis of a dispersive headmodel due to smart glasses embedded antennas at Wi-Fi and 5G frequencies, Applied Computational Electromagnetics Society Journal, 36, 159-167. https://doi.org/10.47037/2020aces.j.360207
  • Kaburcuk, F., Elsherbeni, A. Z., Lumnitzer, R., & Tanner, A. (2020). Electromagnetic waves interaction with a human head model for frequencies up to 100 GHz, Applied Computational Electromagnetics Society Journal, 35, 613-621.
  • Kang, Y., Liu, H., & Cao, Q. (2018). Enhanced absorption in heterostructure composed of graphene and a doped photonic crystals, Optoelectronics and Advanced Materials – Rapid Communications, 12, 665-669.
  • Kaya, N., & Delihacioglu, K. (2014). Reflection and transmission coefficients from chiral nihility slab, Journal of Optoelectronics and Advanced Materials, 16, 859-863.
  • Khanikaev, A. B., Mousavi, S. H., Wu, C., Dabidian, N., Alici, K. B., & Shvets, G. (2012). Electromagnetically induced polarization conversion, Optics Communications, 285, 3423-3427. https://doi.org/10.1016/j.optcom.2012.03.023
  • Lee, D., Nguyen, D. M., & Rho, J. (2017). Acoustic wave science realized by metamaterials, Nano Convergence, 4, 1-15. https://doi.org/10.1186/s40580-017-0097-y
  • Li, K., Lim, J. L., Xu, Z., Hu, D. J. J., Wong, R. Y.-N., Shum, P. P., Hao, E. J., Wang, Y., Sun, Q., & Jiang, M. (2016). Investigation of temperature sensitivity under the influence of coupling strength between a silica core and a satellite waveguide in a photonic crystal fiber with selective infiltration of glycerin, Procedia Engineering, 140, 72-76. https://doi.org/10.1016/j.proeng.2015.08.1115
  • Lu, J., Qiu, C., Ye, L., Fan, X., Ke, M., Zhang F., & Liu, Z. (2017). Observation of topological valley transport of sound in sonic crystals, Nature Physics, 13, 369-375. https://doi.org/10.1038/nphys3999
  • Meng, F., Du, L., Yang, A., & Yuan, X. (2019). Low loss surface electromagnetic waves on a metal-dielectric waveguide working at short wavelength and aqueous environment, Optics Communications, 433, 10-13. https://doi.org/10.1016/j.optcom.2018.09.063
  • Moitra, M., Slovick, B. A., Yu, Z. G., Krishnamurthy, S. & Valentine, J. (2014). Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector, Applied Physics Letters, 104, 171102. https://doi.org/10.1063/1.4873521
  • Napolskii, K. S., Noyan, A. A., & Kushnir, S. E. (2020). Control of high-order photonic band gaps in one-dimensional anodic alumina photonic crystals, Optical Materials, 109, 110317. https://doi.org/10.1016/j.optmat.2020.110317
  • Pozar, D. M. (2012). Microwave Engineering 4th Edition, John Wiley & Sons, Inc. Amherst, Massachusetts. Qi, L., Yang, Z., Lan, F., Gao, X. & Shi, Z. (2010). Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals, Physics of Plasmas, 17, 042501.
  • Rostami, A., Kaatuzian, H., & Rostami-Dogolsara, B. (2020). Acoustic 1 x 2 demultiplexer based on fluid-fluid phononic crystal ring resonators, Journal of Molecular Liquids, 308, 113144. https://doi.org/10.1016/j.molliq.2020.113144
  • Rostami, A., Kaatuzian, H., & Rostami-Dogolsara, B. (2021). Design and analysis of tunable acoustic channel drop filter based on fluid-fluid phononic crystal ring resonators, Wave Motion, 101, 102700. https://doi.org/10.1016/j.wavemoti.2020.102700
  • Sener, U. S. & Eker, S. (2020). Microwave non-destructive testing technique for material characterization of concrete structures via electromagnetic waves with FDTD, Applied Computational Electromagnetics Society Journal, 35, 1390-1391. https://doi.org/10.23919/ACES49320.2020.9196177
  • Shramkova, O. V. & Olkhovskiy, Y.A. (2011). Electromagnetic wave transmission and reflection by a quasi-periodic layered semiconductor structure, Physica B: Physics of Condensed Matter, 406, 1415-1419. https://doi.org/10.1016/j.physb.2011.01041
  • Shi, C., Yuan, J., Luo, X., Shi, S., Lu, S., Yuan, P., Xu, W., Chen, Z., & Yu, H. (2020). Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide, Optics Communications, 461, 125222. https://doi.org/10.1016/j.optcom.2019.125222
  • Singer, A. M., Heikal, A. M., El-Mikati, H., Obayya, S. S. A. & Hameed, M. F. O. (2020). Ultra-low loss and flat dispersion circular porous core photonic crystal fiber for terahertz waveguiding, Applied Computational Electromagnetics Society Journal, 35, 709-717.
  • Sun, H., Huang, S., Wang, Q., Wang, S. & Zhao, W. (2019). Improvement of unidirectional focusing periodic permanent magnet shear-horizontal wave electromagnetic acoustic transducer by oblique bias magnetic field, Sensors and Actuators A: Physical, vol. 290, pp. 36-47, May 2019. https://doi.org/10.1016/j.sna.2019.03.003
  • Sung, S.-Y., Sharma, A., Block, A., Keuhn, K. & Stadler, B. J. H. (2011). Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics, Journal of Applied Physics, 109, 07B738. https://doi.org/10.1063/1.3556781
  • Trzaskowska, A., Hakonen, P., Wiesner, M., & Mielcarek, S. (2020). Generation of a mode in phononic crystal based on 1D/2D structures, Ultrasonics, 106, 106146. https://doi.org/10.1016/j.ultras.2020.106146
  • Wang, H., Chen, Y. & Huang, C. (2019). The electromagnetic waves propagation characteristics of inhomogeneous dusty plasma, Optik – International Journal for Light and Electron Optics, 196, 163148. https://doi.org/10.1016/j.ijleo.2019.163148
  • Wei, D., Cao, F., Wu, Z., Liu, Y., Wang, J., Wang, Q., Liu, X. & Zhang, Q. (2021). Enhanced spectral splitting in a novel solar spectrum optical splitter based on one dimensional photonic crystal heterostructure, Journal of Materiomics, 7, 648-655. https://doi.org/10.1016/j.jmat.2020.10.014
  • Zhang, Y., Cao, Z., Lu, G., Zeng, D., Li, M., & Wang, R. (2018). Reconfigurable array designed for directional EM propagation using energy band theory of photonic crystals, Applied Computational Electromagnetics Society Journal, 33, 1209-1216.

Frequency Analysis of Electromagnetic Waves in Tripartite Photonic Crystals with Adjustable Part Lengths

Yıl 2021, Sayı: 29, 311 - 316, 01.12.2021
https://doi.org/10.31590/ejosat.1019961

Öz

In this study, electromagnetic wave propagation frequencies are investigated in four different photonic crystal structures, three of which are tripartite and one of which is bipartite. In addition, the effects of part lengths and material property parameters (ε, µ) of these structures on electromagnetic wave frequencies are examined. The photonic crystal structures are one-dimensional (1D) and the parts of these structures have different lengths. Differences in the part lengths allow the electromagnetic wave frequencies to be adjusted. The material property parameters of each part of the photonic crystal structures change in the x-axis direction and the default values of these parameters theoretically change from 1 to 2. The values for the first three modes of electromagnetic wave frequencies obtained for four different photonic crystal structures are different from each other. The lowest values of the electromagnetic wave frequencies are obtained for the first photonic crystal structure (S1) with the shortest first and second part lengths.

Kaynakça

  • Alipour-Banaei, H., Serajmohammadi, S. & Mehdizadeh, F. (2017). All optical NAND gate based on nonlinear photonic crystal ring resonators. Optik, 130, 1214-1221. http://dx.doi.org/10.1016/j.ijleo.2016.11.190
  • Askari, M., Hutchins, D., Thomas, P. J., Astolfi, L., Watson, R. L., Abdi, M., Ricci, M., Laureti, S., Nie, L., Freear, S., Wildman, R., Tuck, C., Clarke, M., Woods, E., & Clare, A. T. (2020). Additive manufacturing of metamaterials: A review, Additive Manufacturing, 36, 101562. http://dx.doi.org/10.1016/j.addma.2020.101562
  • Ayman, A., Prasad S. & Singh V. (2020). Tuning the band structures and electromagnetic density of modes in fused Silica slab by acoustic waves, Optik – International Journal for Light and Electron Optics, 204, 164105. http://dx.doi.org/10.1016/j.ijleo.2019.164105
  • Barrientos-Garcia, A., Sukhoivanov, I. A., Andre-Lucio, J. A., Hernandez-Garcia, J. C.., Ramos-Ortiz, G., Ibarra-Manzano, O. G., & Guryev, I. V. (2016). Numerical analysis of supercontinuum generation in photonic-crystal fibers with zero dispersion wavelengths in telecommunication windows, Optik, 127, 10981-10990. https://doi.org/10.1016/j.ijleo.2016.08.111
  • Basmaci, A. N. (2020). Characteristics of electromagnetic wave propagation in a segmented photonic waveguide, Journal of Optoelectronics and Advanced Materials, 22, 452-460.
  • Benhaddad, M., Kerrour, F., Benabbes O., & Saouli, A. (2019). A new photonic crystal fibre with low nonlinearity, low confinement loss and improved effective mode area, Ukrainian Journal of Physical Optics, 20, 47-53. https://doi.org/10.3116/16091833/20/2/47/2019
  • Bi, K., Wang, Q., Xu, J., Chen, L., Lan C., & Lei, M. (2021). All-dielectric metamaterial fabrication techniques, Advanced Optical Materials, 9, 2001474. https://doi.org/10.1002/adom.202001474
  • Busch, K., Freymann, G., Linden, S., Mingaleev, S. F., Tkeshelashvili, L. & Wegener, M. (2007). Periodic nanostructures for photonics. Physics Reports, 444, 101-202. https://doi.org/10.1016/j.physrep.2007.02.011
  • Chen, X.-D., Zhao, F.-L., Chen, M. & Dong, J.-W. (2017). Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation,” Physical Review B, 96, 020202(R).
  • Chung, K. H., Kato, T., Mito, S., Takagi, H., & Inoue, M. (2010). Fabrication and characteristics of one-dimensional magnetophotonic crystals for magneto-optic spatial light phase modulators, Journal of Applied Physics, 107, 09A930.
  • Delihacıoğlu, K. (2014). Chiral frequency selective surfaces comprised of multiple conducting strips per unit cell, IET Microwaves, Antennas & Propagation, 8, 621-626. https://doi.org/10.1049/iet-map.2013.0146
  • Dukata, A., & Waldemar, S. (2020). Transmission parameters of an anisotropic layered structure in the waveguide, SPIE Conference Proceedings, 11442, 114420A-1 - 114420A-17. https://doi.org/10.117/12.2565584
  • Gao, T., Sun, H., Hong, Y., & Qing, X. (2020). Hidden corrosion detection using laser ultrasonic guided waves with multi-frequency local wavenumber estimation, Ultrasonics, 108, 106182. https://doi.org/10.1016/j.ultras.2020.106182
  • Ginn, J. C. & Brener, I. (2012). Realizing optical magnetism from dielectric metamaterials, Physical Review Letters, 108, 097402. https://doi.org/10.1103/PhysRevLett.108.097402
  • Han, Y., Fei, H., Lin, H., Zhang, Y., Zhang, M., & Yang, Y. (2021). Design of broadband all-dielectric valley photonic crystals at telecommunication wavelength, Optics Communications, 488, 126847. https://doi.org/10.1016/j.optcom.2021.126847
  • Hassan, S., Alnasser, K., Lowell, D., & Lin, Y. (2019). Effects of photonic band structure and unit super-cell size in graded photonic super-crystal on broadband light absorption in silicon, Photonics, 6, 50. https://doi.org/10.3390/photonics6020050
  • Jahani, S., & Jacob, Z. (2016). All-dielectric metamaterials, Nature Nanotechnology, 11, 23-36. https://doi.org/10.1038/nnano.2015.304
  • Kaburcuk, F., & Elsherbeni, A. Z. (2021). Efficient analysis of a dispersive headmodel due to smart glasses embedded antennas at Wi-Fi and 5G frequencies, Applied Computational Electromagnetics Society Journal, 36, 159-167. https://doi.org/10.47037/2020aces.j.360207
  • Kaburcuk, F., Elsherbeni, A. Z., Lumnitzer, R., & Tanner, A. (2020). Electromagnetic waves interaction with a human head model for frequencies up to 100 GHz, Applied Computational Electromagnetics Society Journal, 35, 613-621.
  • Kang, Y., Liu, H., & Cao, Q. (2018). Enhanced absorption in heterostructure composed of graphene and a doped photonic crystals, Optoelectronics and Advanced Materials – Rapid Communications, 12, 665-669.
  • Kaya, N., & Delihacioglu, K. (2014). Reflection and transmission coefficients from chiral nihility slab, Journal of Optoelectronics and Advanced Materials, 16, 859-863.
  • Khanikaev, A. B., Mousavi, S. H., Wu, C., Dabidian, N., Alici, K. B., & Shvets, G. (2012). Electromagnetically induced polarization conversion, Optics Communications, 285, 3423-3427. https://doi.org/10.1016/j.optcom.2012.03.023
  • Lee, D., Nguyen, D. M., & Rho, J. (2017). Acoustic wave science realized by metamaterials, Nano Convergence, 4, 1-15. https://doi.org/10.1186/s40580-017-0097-y
  • Li, K., Lim, J. L., Xu, Z., Hu, D. J. J., Wong, R. Y.-N., Shum, P. P., Hao, E. J., Wang, Y., Sun, Q., & Jiang, M. (2016). Investigation of temperature sensitivity under the influence of coupling strength between a silica core and a satellite waveguide in a photonic crystal fiber with selective infiltration of glycerin, Procedia Engineering, 140, 72-76. https://doi.org/10.1016/j.proeng.2015.08.1115
  • Lu, J., Qiu, C., Ye, L., Fan, X., Ke, M., Zhang F., & Liu, Z. (2017). Observation of topological valley transport of sound in sonic crystals, Nature Physics, 13, 369-375. https://doi.org/10.1038/nphys3999
  • Meng, F., Du, L., Yang, A., & Yuan, X. (2019). Low loss surface electromagnetic waves on a metal-dielectric waveguide working at short wavelength and aqueous environment, Optics Communications, 433, 10-13. https://doi.org/10.1016/j.optcom.2018.09.063
  • Moitra, M., Slovick, B. A., Yu, Z. G., Krishnamurthy, S. & Valentine, J. (2014). Experimental demonstration of a broadband all-dielectric metamaterial perfect reflector, Applied Physics Letters, 104, 171102. https://doi.org/10.1063/1.4873521
  • Napolskii, K. S., Noyan, A. A., & Kushnir, S. E. (2020). Control of high-order photonic band gaps in one-dimensional anodic alumina photonic crystals, Optical Materials, 109, 110317. https://doi.org/10.1016/j.optmat.2020.110317
  • Pozar, D. M. (2012). Microwave Engineering 4th Edition, John Wiley & Sons, Inc. Amherst, Massachusetts. Qi, L., Yang, Z., Lan, F., Gao, X. & Shi, Z. (2010). Properties of obliquely incident electromagnetic wave in one-dimensional magnetized plasma photonic crystals, Physics of Plasmas, 17, 042501.
  • Rostami, A., Kaatuzian, H., & Rostami-Dogolsara, B. (2020). Acoustic 1 x 2 demultiplexer based on fluid-fluid phononic crystal ring resonators, Journal of Molecular Liquids, 308, 113144. https://doi.org/10.1016/j.molliq.2020.113144
  • Rostami, A., Kaatuzian, H., & Rostami-Dogolsara, B. (2021). Design and analysis of tunable acoustic channel drop filter based on fluid-fluid phononic crystal ring resonators, Wave Motion, 101, 102700. https://doi.org/10.1016/j.wavemoti.2020.102700
  • Sener, U. S. & Eker, S. (2020). Microwave non-destructive testing technique for material characterization of concrete structures via electromagnetic waves with FDTD, Applied Computational Electromagnetics Society Journal, 35, 1390-1391. https://doi.org/10.23919/ACES49320.2020.9196177
  • Shramkova, O. V. & Olkhovskiy, Y.A. (2011). Electromagnetic wave transmission and reflection by a quasi-periodic layered semiconductor structure, Physica B: Physics of Condensed Matter, 406, 1415-1419. https://doi.org/10.1016/j.physb.2011.01041
  • Shi, C., Yuan, J., Luo, X., Shi, S., Lu, S., Yuan, P., Xu, W., Chen, Z., & Yu, H. (2020). Transmission characteristics of multi-structure bandgap for lithium niobate integrated photonic crystal and waveguide, Optics Communications, 461, 125222. https://doi.org/10.1016/j.optcom.2019.125222
  • Singer, A. M., Heikal, A. M., El-Mikati, H., Obayya, S. S. A. & Hameed, M. F. O. (2020). Ultra-low loss and flat dispersion circular porous core photonic crystal fiber for terahertz waveguiding, Applied Computational Electromagnetics Society Journal, 35, 709-717.
  • Sun, H., Huang, S., Wang, Q., Wang, S. & Zhao, W. (2019). Improvement of unidirectional focusing periodic permanent magnet shear-horizontal wave electromagnetic acoustic transducer by oblique bias magnetic field, Sensors and Actuators A: Physical, vol. 290, pp. 36-47, May 2019. https://doi.org/10.1016/j.sna.2019.03.003
  • Sung, S.-Y., Sharma, A., Block, A., Keuhn, K. & Stadler, B. J. H. (2011). Magneto-optical garnet waveguides on semiconductor platforms: Magnetics, mechanics, and photonics, Journal of Applied Physics, 109, 07B738. https://doi.org/10.1063/1.3556781
  • Trzaskowska, A., Hakonen, P., Wiesner, M., & Mielcarek, S. (2020). Generation of a mode in phononic crystal based on 1D/2D structures, Ultrasonics, 106, 106146. https://doi.org/10.1016/j.ultras.2020.106146
  • Wang, H., Chen, Y. & Huang, C. (2019). The electromagnetic waves propagation characteristics of inhomogeneous dusty plasma, Optik – International Journal for Light and Electron Optics, 196, 163148. https://doi.org/10.1016/j.ijleo.2019.163148
  • Wei, D., Cao, F., Wu, Z., Liu, Y., Wang, J., Wang, Q., Liu, X. & Zhang, Q. (2021). Enhanced spectral splitting in a novel solar spectrum optical splitter based on one dimensional photonic crystal heterostructure, Journal of Materiomics, 7, 648-655. https://doi.org/10.1016/j.jmat.2020.10.014
  • Zhang, Y., Cao, Z., Lu, G., Zeng, D., Li, M., & Wang, R. (2018). Reconfigurable array designed for directional EM propagation using energy band theory of photonic crystals, Applied Computational Electromagnetics Society Journal, 33, 1209-1216.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşe Nihan Basmacı 0000-0003-3737-3751

Erken Görünüm Tarihi 15 Aralık 2021
Yayımlanma Tarihi 1 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 29

Kaynak Göster

APA Basmacı, A. N. (2021). Frequency Analysis of Electromagnetic Waves in Tripartite Photonic Crystals with Adjustable Part Lengths. Avrupa Bilim Ve Teknoloji Dergisi(29), 311-316. https://doi.org/10.31590/ejosat.1019961