Bu makale, kargaların akıllı davranışına dayanan, Karga Arama Algoritması (KAA) adlı yeni bir metasezgisel algoritmayı tanıtmaktadır. KAA, kargaların fazla yiyeceklerini saklanma yerlerinde sakladığı ve yiyecek gerektiğinde geri aldığı bu fikirden yola çıkarak çalışan popülasyona dayalı bir tekniktir. KAA metodu üzerinde fl sabit parametresi lokal ve gobal arama yeteneği arasında önemli farklılıklar yaratmaktadır. Bu çalışmada beş farklı fl değeri belirlenmiş ve KAA ‘ nın performansı üzerindeki etkisi araştırılmıştır. KAA ile on farklı son yıllarda geliştirilmiş CEC-C06-2019 seri fonksiyonları çözülmüştür. KAA ile çeşitli sonuçlar elde edilmiştir (ortalama, standart sapma, en iyi ve en kötü). KAA ile elde edilen sonuçlar birbirleri ile ve çeşitli sezgisel algoritmaların sonuçları ile karşılaştırılmıştır. Test sonuçları, KAA kullanımının diğer algoritmalara kıyasla umut verici sonuçlar bulmasına yol açabileceğini ortaya koymaktadır.
This paper introduces a new metaheuristic algorithm named Crow Search Algorithm (CSA) based on the intelligent behavior of crows. CSA is a population-based technique that works from this idea that crows store their excess food in their hiding places and retrieve it when needed. On the CSA method, the constant parameter fl creates significant differences between local and global search capabilities. In this study, five different fl values were determined and the effect of CSA on performance was investigated. CEC-C06-2019 serial functions developed in ten different recent years have been solved with CSA. Various results were obtained with CSA (mean, standard deviation, best and worst). The results obtained by CSA were compared with each other and with the results of various heuristic algorithms. The test results reveal that the use of CSA can lead to promising results compared to other algorithms.
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2021 |
Yayımlandığı Sayı | Yıl 2021 Sayı: 32 |