Araştırma Makalesi
BibTex RIS Kaynak Göster

Karga Arama Algoritması İçin Parametre Analizleri

Yıl 2021, Sayı: 32, 878 - 882, 31.12.2021
https://doi.org/10.31590/ejosat.1039646

Öz

Bu makale, kargaların akıllı davranışına dayanan, Karga Arama Algoritması (KAA) adlı yeni bir metasezgisel algoritmayı tanıtmaktadır. KAA, kargaların fazla yiyeceklerini saklanma yerlerinde sakladığı ve yiyecek gerektiğinde geri aldığı bu fikirden yola çıkarak çalışan popülasyona dayalı bir tekniktir. KAA metodu üzerinde fl sabit parametresi lokal ve gobal arama yeteneği arasında önemli farklılıklar yaratmaktadır. Bu çalışmada beş farklı fl değeri belirlenmiş ve KAA ‘ nın performansı üzerindeki etkisi araştırılmıştır. KAA ile on farklı son yıllarda geliştirilmiş CEC-C06-2019 seri fonksiyonları çözülmüştür. KAA ile çeşitli sonuçlar elde edilmiştir (ortalama, standart sapma, en iyi ve en kötü). KAA ile elde edilen sonuçlar birbirleri ile ve çeşitli sezgisel algoritmaların sonuçları ile karşılaştırılmıştır. Test sonuçları, KAA kullanımının diğer algoritmalara kıyasla umut verici sonuçlar bulmasına yol açabileceğini ortaya koymaktadır.

Kaynakça

  • Abdullah, J. M., Rashid, A.T. "Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process," in IEEE Access, vol. 7, pp. 43473-43486, 2019, doi: 10.1109/ACCESS.2019.2907012.
  • Askarzadeh, A., 2016. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm, Computers and Structures, 169, 1-12.
  • Mirjalili, S., ‘‘Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems,’’ Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, May 2015.
  • Mirjalili, S., Lewis, A., ‘‘The whale optimization algorithm,’’ Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016.
  • Price, K. V., Awad, N. H., Ali, M. Z., Suganthan, P. N., ‘‘The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization,’’ School Elect. Electron. Eng., Nanyang Technol. Univ., Singapore, Tech. Rep., Nov. 2018.
  • Yang, X.S, 2011. Metaheuristic optimization, Scholarpedia 2011; 6 11472.

Parameter Analysis for Crow Search Algorithm

Yıl 2021, Sayı: 32, 878 - 882, 31.12.2021
https://doi.org/10.31590/ejosat.1039646

Öz

This paper introduces a new metaheuristic algorithm named Crow Search Algorithm (CSA) based on the intelligent behavior of crows. CSA is a population-based technique that works from this idea that crows store their excess food in their hiding places and retrieve it when needed. On the CSA method, the constant parameter fl creates significant differences between local and global search capabilities. In this study, five different fl values were determined and the effect of CSA on performance was investigated. CEC-C06-2019 serial functions developed in ten different recent years have been solved with CSA. Various results were obtained with CSA (mean, standard deviation, best and worst). The results obtained by CSA were compared with each other and with the results of various heuristic algorithms. The test results reveal that the use of CSA can lead to promising results compared to other algorithms.

Kaynakça

  • Abdullah, J. M., Rashid, A.T. "Fitness Dependent Optimizer: Inspired by the Bee Swarming Reproductive Process," in IEEE Access, vol. 7, pp. 43473-43486, 2019, doi: 10.1109/ACCESS.2019.2907012.
  • Askarzadeh, A., 2016. A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm, Computers and Structures, 169, 1-12.
  • Mirjalili, S., ‘‘Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems,’’ Neural Comput. Appl., vol. 27, no. 4, pp. 1053–1073, May 2015.
  • Mirjalili, S., Lewis, A., ‘‘The whale optimization algorithm,’’ Adv. Eng. Softw., vol. 95, pp. 51–67, May 2016.
  • Price, K. V., Awad, N. H., Ali, M. Z., Suganthan, P. N., ‘‘The 100-digit challenge: Problem definitions and evaluation criteria for the 100-digit challenge special session and competition on single objective numerical optimization,’’ School Elect. Electron. Eng., Nanyang Technol. Univ., Singapore, Tech. Rep., Nov. 2018.
  • Yang, X.S, 2011. Metaheuristic optimization, Scholarpedia 2011; 6 11472.
Toplam 6 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emine Baş 0000-0003-4322-6010

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 32

Kaynak Göster

APA Baş, E. (2021). Karga Arama Algoritması İçin Parametre Analizleri. Avrupa Bilim Ve Teknoloji Dergisi(32), 878-882. https://doi.org/10.31590/ejosat.1039646