Araştırma Makalesi
BibTex RIS Kaynak Göster

İndiyum Oksit Nanoyapılarının Elektrokimyasal Sentezi Ve İndiyum Oksit/Kadmiyum Sülfür Kuantum Nokta Duyarlı Güneş Pillerinin Tasarımı

Yıl 2021, Sayı: 32, 657 - 662, 31.12.2021
https://doi.org/10.31590/ejosat.1040289

Öz

Dünyada hızla gelişen teknoloji ile birlikte çoğalan enerji ihtiyacını karşılamak için alternatif enerji kaynaklarının araştırılması, son yıllarda özellikle güneş pillerine olan ilgiyi oldukça arttırmıştır. Bu çalışmada, literatürde ilk defa dönüşüm verimliliği yüksek kuantum nokta duyarlı güneş pilleri için kadmiyum sülfür (CdS) kuantum noktalarıyla dekore edilmiş indiyum oksit (In2O3) esaslı fotoanotların sentezi gerçekleştirildi. Sentezlenen materyalin yapısal, morfolojik ve fotoelektrokimyasal karakterizasyonlarında X-ışını fotoelektron spektroskopisi, X-ışını difraktometresi, Enerji dağılımlı X-ışını spektroskopisi, Taramalı elektron mikroskopi teknikleri ve fotoakım yoğunluğu ölçümleri kullanıldı. Karakterize edilen fotoanotlar kullanılarak kuantum nokta duyarlı güneş pilleri tasarlandı ve temel kalite parametreleri olan dolum faktörü ile dönüşüm verimliliği fotoakım yoğunluğu-voltaj eğrileriyle hesaplandı. Ölçümler sonucunda tasarlanan güneş pillerinin 0.324’lük bir dolum faktörüne ve %0.22’lik bir dönüşüm verimliliğine sahip olduğu belirlendi.

Teşekkür

Bu çalışma, finansal olarak Atatürk Üniversitesi tarafından desteklenmiş olup, QDSSC tasarımı yazarların da yer aldığı 315M421 nolu TÜBİTAK projesinden esinlenerek geliştirilmiştir. Bu bağlamda, araştırma için alt yapısını kullandığımız Atatürk Üniversitesi Fen Fakültesi Dekanlığı’na, TÜBİTAK’a ve XPS, SEM ve EDS ölçümleri için Atatürk Üniversitesi Doğu Anadolu Yüksek Teknoloji Araştırma Merkezi’ne (DAYTAM) teşekkürlerimizi sunarız.

Kaynakça

  • Anikeeva P.O., Halpert J.E., Bawendi M.G., Bulović V. (2009). “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum”. Nano Letters. Sayı: 9(7), s.2532-2536.
  • Badawi A., Al Otaibi A.H., Al-Baradi A.M., Almalki A.S.A., Algarni S.A., Atta A.A. (2020). “Exploring the optical properties of lead zinc sulfide photoanodes for optoelectronics”. Applied Physics A. Sayı: 126(9), s.726.
  • Beard M.C., Luther J.M., Nozik A.J. (2014). “The promise and challenge of nanostructured solar cells”. Nature Nanotechnology. Sayı: 9, s.951-954.
  • Chen L.C., Tien C.H., Liao W.C. (2011). “A phosphor-free white light-emitting diode using In2O3 : Tb transparent conductive light converter”. Journal of Physics D: Applied Physics. Sayı: 44(16), s.165101.
  • Chen P.C., Shen G., Sukcharoenchoke S., Zhou C. (2009). “Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films”. Applied Physics Letters. Sayı: 94(4), s.043113.
  • Chen S., Paulose M., Ruan C., Mor G.K., Varghese O.K., Kouzoudis D. (2006). “Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells”. Journal of Photochemistry and Photobiology A: Chemistry. Sayı: 177(2–3), s.177-184.
  • Dresselhaus M.S., Thomas I.L. (2001). “Alternative energy technologies”. Nature, Sayı: 414, s.334-337.
  • Huang Z., Chai C., Tan X., Wu J., Yuan A., Zhou Z. (2007). “Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method”. Materials Letters. Sayı: 61(29), s.5137-5140.
  • Jia H., Zhang Y., Chen X., Shu J., Luo X., Zhang Z. (2003). “Efficient field emission from single crystalline indium oxide pyramids”. Applied Physics Letters. Sayı: 82(23), s.4146-4148.
  • Jian L., Shihua H., Lö H. (2015). “Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method”. Journal of Semiconductors. Sayı: 36(12), s.123007.
  • Jo I.R, Lee Y.H, Kim H., Ahn K.S. (2021). “Multifunctional nitrogen-doped graphene quantum dots incorporated into mesoporous TiO2 films for quantum dot-sensitized solar cells”. Journal of Alloys and Compounds. Sayı: 870, s. 159527.
  • Kim J., Rim Y.S., Chen H., Cao H.H., Nakatsuka N., Hinton H.L. (2015). “Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography”. ACS Nano. Sayı: 9(4), s.4572-4582.
  • Latif H., Ashraf S., Shahid Rafique M., Imtiaz A., Sattar A., Zaheer S. (2020). “A novel, PbS quantum dot-Sensitized solar cell structure with TiO2-fMWCNTS nano-composite filled meso-porous anatase TiO2 photoanode”. Solar Energy. Sayı: 204, s.617-623.
  • Lin Z.Q., Lai Y.K., Hu R.G., Li J., Du R.G., Lin C.J. (2010). “A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals”. Electrochimica Acta. Sayı: 55(28), s.8717-8723. Liu Q., Lu W., Ma A., Tang J., Lin J., Fang J. (2005). “Study of quasi-monodisperse In2O3 nanocrystals: Synthesis and optical determination”. Journal of the American Chemical Society. Sayı: 127(15), s.5276-5277.
  • Padmanathan N., Shao H., McNulty D., O’Dwyer C., Razeeb K.M. (2016). “Hierarchical NiO-In2O3 microflower (3D)/ nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability”. Journal of Materials Chemistry A. Sayı: 4(13), s.4820-4830.
  • Prashant V. Kamat. (2007). “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion”. The Journal of Physical Chemistry C, Sayı: 111(7), s.2834-2860.
  • Rumble J.R., Bickham D.M., Powell C.J. (1992). “The NIST x‐ray photoelectron spectroscopy database”. Surface and Interface Analysis. Sayı: 19(1–12), s.241-246.
  • Schaller R.D., Agranovich V.M., Klimov V.I. (2005). “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states”. Nature Physics. Sayı: 1(3), s.189-194.
  • Shen C., Xu N., Guan R., Yue L., Zhang W. (2021). “Highly sensitive ethanol gas sensor based on In2O3 spheres”. Ionics. Sayı: 27(8), s.3647-3653.
  • Shen G., Xu J., Wang X., Huang H., Chen D. (2011). “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications”. Advanced Materials. Sayı: 23(6), s.771-775.
  • Shinde D.V., Ahn D.Y., Jadhav V.V., Lee D.Y., Shrestha N.K., Lee J.K. (2014). “A coordination chemistry approach for shape controlled synthesis of indium oxide nanostructures and their photoelectrochemical properties”. Journal of Materials Chemistry A. Sayı: 2(15), s.5490-5498.
  • Singh N., Salam Z., Sivasankar N., Subramania A. (2017). “ZnSe quantum dots sensitized electrospun ZnO nanofibers as an efficient photoanode for improved performance of QDSSC”. Materials Science in Semiconductor Processing. Sayı: 64, s.16-23.
  • Tuzluca F.N., Yesilbag Y.O., Akkus T., Ertugrul M (2017). “Effects of graphite on the synthesis of 1-D single crystal In2O3 nanostructures at high temperature”. Materials Science in Semiconductor Processing. Sayı: 66, s.62-68.
  • Tyagi J., Gupta H., Purohit L.P. (2021). “Mesoporous ZnO/TiO2 photoanodes for quantum dot sensitized solar cell”. Optical Materials. Sayı: 115, s.111014.
  • Zhang K., Shen Y., Lin Z., Dong Z. (2021). “Ultra-high ethanol sensitivity sensor based on porous In2O3 decorated with gold nanoparticles”. Materials Science in Semiconductor Processing. Sayı: 135, s.106124.
  • Zou X., Liu X., Wang C., Jiang Y., Wang Y., Xiao X. (2013). “Controllable electrical properties of metal-doped in2o3 nanowires for high-performance enhancement-mode transistors”. ACS Nano. Sayı: 7(1), s.804-810.

Electrochemıcal Synthesıs Of Indıum Oxıde Nanostructures And Desıgn Of Indıum Oxıde/Cadmıum Sulfıde Quantum Dot Sensıtızed Solar Cells

Yıl 2021, Sayı: 32, 657 - 662, 31.12.2021
https://doi.org/10.31590/ejosat.1040289

Öz

The exploration for alternative energy sources in order to meet the increasing energy need in the world with the rapidly developing technology has increased the interest especially in solar cells in recent years. This study reports the synthesis of indium oxide (In2O3) based photoanodes decorated with cadmium sulfide (CdS) quantum dots to be used for the first time in the literature in quantum dot sensitized solar cells with high conversion efficiency. The X-ray photoelectron spectroscopy, X-ray powder diffraction spectroscopy, Energy dispersive X-ray spectroscopy, Scanning electron microscopy and photocurrent density measurements were used for the structural, morphological and photoelectrochemical characterization of the synthesized material. Quantum dot sensitized solar cells were designed using the characterized photoanodes and the basic quality parameters, the filling factor, and the conversion efficiency were calculated with the photocurrent density-voltage curves. As a result of the measurements, it has been determined that the designed solar cells have a filling factor of 0.324 and a conversion efficiency of 0.22%.

Kaynakça

  • Anikeeva P.O., Halpert J.E., Bawendi M.G., Bulović V. (2009). “Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum”. Nano Letters. Sayı: 9(7), s.2532-2536.
  • Badawi A., Al Otaibi A.H., Al-Baradi A.M., Almalki A.S.A., Algarni S.A., Atta A.A. (2020). “Exploring the optical properties of lead zinc sulfide photoanodes for optoelectronics”. Applied Physics A. Sayı: 126(9), s.726.
  • Beard M.C., Luther J.M., Nozik A.J. (2014). “The promise and challenge of nanostructured solar cells”. Nature Nanotechnology. Sayı: 9, s.951-954.
  • Chen L.C., Tien C.H., Liao W.C. (2011). “A phosphor-free white light-emitting diode using In2O3 : Tb transparent conductive light converter”. Journal of Physics D: Applied Physics. Sayı: 44(16), s.165101.
  • Chen P.C., Shen G., Sukcharoenchoke S., Zhou C. (2009). “Flexible and transparent supercapacitor based on In2O3 nanowire/carbon nanotube heterogeneous films”. Applied Physics Letters. Sayı: 94(4), s.043113.
  • Chen S., Paulose M., Ruan C., Mor G.K., Varghese O.K., Kouzoudis D. (2006). “Electrochemically synthesized CdS nanoparticle-modified TiO2 nanotube-array photoelectrodes: Preparation, characterization, and application to photoelectrochemical cells”. Journal of Photochemistry and Photobiology A: Chemistry. Sayı: 177(2–3), s.177-184.
  • Dresselhaus M.S., Thomas I.L. (2001). “Alternative energy technologies”. Nature, Sayı: 414, s.334-337.
  • Huang Z., Chai C., Tan X., Wu J., Yuan A., Zhou Z. (2007). “Photoluminescence properties of the In2O3 octahedrons synthesized by carbothermal reduction method”. Materials Letters. Sayı: 61(29), s.5137-5140.
  • Jia H., Zhang Y., Chen X., Shu J., Luo X., Zhang Z. (2003). “Efficient field emission from single crystalline indium oxide pyramids”. Applied Physics Letters. Sayı: 82(23), s.4146-4148.
  • Jian L., Shihua H., Lö H. (2015). “Metal-catalyzed growth of In2O3 nanotowers using thermal evaporation and oxidation method”. Journal of Semiconductors. Sayı: 36(12), s.123007.
  • Jo I.R, Lee Y.H, Kim H., Ahn K.S. (2021). “Multifunctional nitrogen-doped graphene quantum dots incorporated into mesoporous TiO2 films for quantum dot-sensitized solar cells”. Journal of Alloys and Compounds. Sayı: 870, s. 159527.
  • Kim J., Rim Y.S., Chen H., Cao H.H., Nakatsuka N., Hinton H.L. (2015). “Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical lift-off lithography”. ACS Nano. Sayı: 9(4), s.4572-4582.
  • Latif H., Ashraf S., Shahid Rafique M., Imtiaz A., Sattar A., Zaheer S. (2020). “A novel, PbS quantum dot-Sensitized solar cell structure with TiO2-fMWCNTS nano-composite filled meso-porous anatase TiO2 photoanode”. Solar Energy. Sayı: 204, s.617-623.
  • Lin Z.Q., Lai Y.K., Hu R.G., Li J., Du R.G., Lin C.J. (2010). “A highly efficient ZnS/CdS@TiO2 photoelectrode for photogenerated cathodic protection of metals”. Electrochimica Acta. Sayı: 55(28), s.8717-8723. Liu Q., Lu W., Ma A., Tang J., Lin J., Fang J. (2005). “Study of quasi-monodisperse In2O3 nanocrystals: Synthesis and optical determination”. Journal of the American Chemical Society. Sayı: 127(15), s.5276-5277.
  • Padmanathan N., Shao H., McNulty D., O’Dwyer C., Razeeb K.M. (2016). “Hierarchical NiO-In2O3 microflower (3D)/ nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability”. Journal of Materials Chemistry A. Sayı: 4(13), s.4820-4830.
  • Prashant V. Kamat. (2007). “Meeting the clean energy demand: Nanostructure architectures for solar energy conversion”. The Journal of Physical Chemistry C, Sayı: 111(7), s.2834-2860.
  • Rumble J.R., Bickham D.M., Powell C.J. (1992). “The NIST x‐ray photoelectron spectroscopy database”. Surface and Interface Analysis. Sayı: 19(1–12), s.241-246.
  • Schaller R.D., Agranovich V.M., Klimov V.I. (2005). “High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states”. Nature Physics. Sayı: 1(3), s.189-194.
  • Shen C., Xu N., Guan R., Yue L., Zhang W. (2021). “Highly sensitive ethanol gas sensor based on In2O3 spheres”. Ionics. Sayı: 27(8), s.3647-3653.
  • Shen G., Xu J., Wang X., Huang H., Chen D. (2011). “Growth of directly transferable In2O3 nanowire mats for transparent thin-film transistor applications”. Advanced Materials. Sayı: 23(6), s.771-775.
  • Shinde D.V., Ahn D.Y., Jadhav V.V., Lee D.Y., Shrestha N.K., Lee J.K. (2014). “A coordination chemistry approach for shape controlled synthesis of indium oxide nanostructures and their photoelectrochemical properties”. Journal of Materials Chemistry A. Sayı: 2(15), s.5490-5498.
  • Singh N., Salam Z., Sivasankar N., Subramania A. (2017). “ZnSe quantum dots sensitized electrospun ZnO nanofibers as an efficient photoanode for improved performance of QDSSC”. Materials Science in Semiconductor Processing. Sayı: 64, s.16-23.
  • Tuzluca F.N., Yesilbag Y.O., Akkus T., Ertugrul M (2017). “Effects of graphite on the synthesis of 1-D single crystal In2O3 nanostructures at high temperature”. Materials Science in Semiconductor Processing. Sayı: 66, s.62-68.
  • Tyagi J., Gupta H., Purohit L.P. (2021). “Mesoporous ZnO/TiO2 photoanodes for quantum dot sensitized solar cell”. Optical Materials. Sayı: 115, s.111014.
  • Zhang K., Shen Y., Lin Z., Dong Z. (2021). “Ultra-high ethanol sensitivity sensor based on porous In2O3 decorated with gold nanoparticles”. Materials Science in Semiconductor Processing. Sayı: 135, s.106124.
  • Zou X., Liu X., Wang C., Jiang Y., Wang Y., Xiao X. (2013). “Controllable electrical properties of metal-doped in2o3 nanowires for high-performance enhancement-mode transistors”. ACS Nano. Sayı: 7(1), s.804-810.
Toplam 26 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Emir Çepni 0000-0001-8738-1157

Tuba Öznülüer 0000-0001-5148-2984

Ümit Demir 0000-0002-3123-8594

Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Sayı: 32

Kaynak Göster

APA Çepni, E., Öznülüer, T., & Demir, Ü. (2021). İndiyum Oksit Nanoyapılarının Elektrokimyasal Sentezi Ve İndiyum Oksit/Kadmiyum Sülfür Kuantum Nokta Duyarlı Güneş Pillerinin Tasarımı. Avrupa Bilim Ve Teknoloji Dergisi(32), 657-662. https://doi.org/10.31590/ejosat.1040289