Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Ultrasonic Attenuation and Hardness Relationship in Ceramic-Metal Composites

Yıl 2022, Sayı: 35, 541 - 547, 07.05.2022
https://doi.org/10.31590/ejosat.1056174

Öz

In material characterization, they contain a large amount of information at the frequency obtained about the mechanical and physical properties of the material under investigation, thanks to shear waves during the longitudinal passage of ultrasonic waves from materials.In this study, an experimental study was carried out on metal matrix composite samples to examine the variation of some ultrasonic parameters such as wave attenuation coefficients. Ultrasonic longitudinal and shear attenuation values obtained in copper-silicon carbide composites were measured at 4 MHz using the pulse-echo technique. All of the produced samples were sintered at 1050 ºC using microwave sintering technique. The variation of the shear attenuation values with the longitudinal wave in the material with the % SiC volumetric percentages of the hardness in the samples were measured. The experimental results obtained are discussed and analyzed to develop a technique in ultrasonic nondestructive testing for microstructure determination. It contains a large amount of information in the frequency obtained about the mechanical and physical properties of the material examined by the passage of ultrasonic waves through the materials.
In this study, an experimental study was carried out to examine the variation of some ultrasonic parameters such as wave attenuation coefficients on metal matrix SiC doped composite samples. Ultrasonic longitudinal and shear attenuation values of produced copper-silicon carbide composite samples were measured at 4 MHz frequency by pulse-echo technique. Variations of longitudinal and shear attenuation values and hardness with % SiC volume percentages were determined. The experimental results obtained are discussed and analyzed to improve the ultrasonic nondestructive testing method for microstructure determination.

Destekleyen Kurum

Afyon Kocatepe University

Teşekkür

Afyon Kocatepe University

Kaynakça

  • Bilici Özkan V., Sarpün İ. H., Kılıçkaya M. S., (2019). The Relationship of Thermal and Elastic Properties with Ultrasonic Wave Velocity of WC/Co-Ti Composites. Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi, 2 (1), 20-28.
  • Bilici Özkan V., Yönetken A., Erol A., 2021. Characterization of Physical and Mechanical Properties of Ni-Co-WC Ceramic-Metal Composites Using Ultrasonics”, 5th International Conference on Engineering Technology and Applied Sciences, 02-06 August 2021, Sarajevo, Bosnia and Herzegovina
  • Bindumadhavan P. N., Wah H. K., Prabhakar O., (2002). “Assessment of particlematrix debonding in particulate metal matrix composites using ultrasonic velocity measurements, Material Science Engineering A, 323(1-2), pp. 42-51.
  • Blitz J. and Simpson G., (1984). Ultrasonic Methods of Non-destructive Testing, Published Champman&Hall, London
  • Chen Y., Cao M.,, Xu Q., Zhu J., (2003). Electroless nickel plating on silicon carbide nanoparticles Surface and Coatings Technology, 172 , 90–94
  • D’astous F.T. and Foster F. S., (1986). Frequency dependence of ultrasound attenuation and backscatter in breast tissue, Ultrasound in Med.&Biol., 12 (10), pp. 795-808
  • Filipczynski L., Zdzislaw P., Wehr J., (1966). Ultrasonic Methods of Testing Materials, Butterworths, London, Gür C. H., (2001). Investigation of SiCp Reinforced Aluminium Matrix Composites by Shear and Longitudinal Ultrasonic Waves, INSIGHT, 43, pp.748-750.
  • Lemlikchi S., Asmani M., Djelouah H. And Schaaf P., (2017). Direct transduction method for measuring the ultrasonic attenuation in Si (111)in the frequency range 100 MHz-1 GHz, Measurement, 1002, 279-287.
  • Mylavarapu P. and Woldesenbet E., (2008). Characterization of syntactic foams- an Ultrasonic Approach, Journal of Cellular Plastics, 44 (3),2008,pp. 203-222.
  • Nagy P.B., (2003). Ultrasonic Nondestructive Evaluation: Class Notes, Part 3: Attenuation”, Dept. Aerospace Eng&Eng Mechanics,
  • Podymova N.B. and Karabutov A. A., (2017). Combined effects of reinforcement fraction and porosity on ultrasonic velocity in SiC particulate aluminum alloy matrix composites, Composites Part B, 113, pp. 138-143.
  • Saniie J., Wang T. and Bilgutay N.M., (1988). Statistical Evaluation of Backscattered Ultrasonic Grain Signals, , Journal of Acoustical Society of America, Vol.84, No.1pp.400-408.
  • Sarpün İ.H., Özkan V., Ünal R., Tuncel S., 2009. Mean grain size evaluation of tungsten- and boron-carbide composites sintered at various temperatures by ultrasonic methods”, Int. J. Microstructure and Materials Properties, V 4(1), p. 104-111.
  • Somiya, S., Inomata, Y., (1991). Silicon Carbide Ceramics, Ed. Elsevier Applied Science,
  • Trojanova Z., Lukac P., Ferkel H., Riehemann W., (2004). Internal Friction in Microcrystalline and Nanocrystalline Mg, Materials Science and Engineering A 370, pp: 154-157.
  • Yönetken, A., (2017). Production and investigation of ceramic metal composite from electroless Ni plated AlN and Al powders, International Journal of Innovative Research in Science, Engineering and Technology, 6 (10), pp. 21-26.
  • Yönetken, A. (2019). Investigation of the Production and Mechanical Properties of Silicon Carbide-Reinforced Composites. Journal of the Institute of Science and Technology, 9 (3), 1551-1558. Retrieved from https://dergipark.org.tr/tr/pub/jist/issue/47916/482983
  • Yönetken A., Erol A., (2020). Sintering and Characterization of SiC Reinforced Ni Powders in Microwave Furnace,Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi,12(1), 83-89

Seramik-Metal Kompozitlerde Ultrasonik Zayıflama ve Sertlik İlişkisinin Araştırılması

Yıl 2022, Sayı: 35, 541 - 547, 07.05.2022
https://doi.org/10.31590/ejosat.1056174

Öz

Malzeme karakterizasyonunda ultrasonic dalgaların malzemelerden boyuna geçişleri sırasında kayma dalgaları sayesinde incelenen malzemenin mekanik ve fiziksel özellikleri hakkında elde edilen frekansta yer alan çok sayıda bilgiyi bulundururlar. Bu çalışmada, elde edilen dalga zayıflama katsayıları gibi bazı ultrasonik parametrelerin değişimini incelemek için metal matrisli kompozit numuneler üzerinde deneysel bir çalışma yapılmıştır. Bakır-silisyum karbür kompozitlerde elde edilen ultrasonik boyuna ve kayma zayıflama değerleri darbe-yankı tekniği ile 4 MHz frekansında ölçülmüştür. Üretilen numunelerin tamamı 1050 ºC sıcaklıkta mikrodalga sinterleme tekniği ile sinterlenmiştir. Malzemede boyuna dalga ile kayma zayıflama değerlerinin numunedlerde sertliğin % SiC hacimsel yüzdeleri ile değişimleri ölçülmüştür. Elde edilen deneysel sonuçlar, mikroyapı belirlemede ultrasonik tahribatsız muayne yönteminde bir teknik geliştirmek için tartışılmış ve analiz edilmiştir. Ultrasonik dalgaların malzemelerden geçişleri ile incelenen malzemenin mekanik ve fiziksel özellikleri hakkında elde edilen frekansta yer alan çok sayıda bilgiyi içermektedir.

Bu çalışmada, Metal matrisli SiC katkılı kompozit numuneler üzerinde dalga zayıflama katsayıları gibi bazı ultrasonik parametrelerin değişimini incelemek için deneysel bir çalışma yapılmıştır. Üretilen Bakır-silisyum karbür kompozit numunelerde ultrasonik boyuna ve kayma zayıflama değerleri darbe-yankı tekniği ile 4 MHz frekansında ölçülmüştür. Boyuna ve kayma zayıflama değerlerinin ve sertliğin % SiC hacim yüzdeleri ile değişimleri belirlenmiştir. Elde edilen deneysel sonuçlar, mikroyapı belirlemede ultrasonik tahribatsız muayne yöntemini geliştirmek için tartışılmış ve analiz edilmiştir.

Kaynakça

  • Bilici Özkan V., Sarpün İ. H., Kılıçkaya M. S., (2019). The Relationship of Thermal and Elastic Properties with Ultrasonic Wave Velocity of WC/Co-Ti Composites. Afyon Kocatepe Üniversitesi Uluslararası Mühendislik Teknolojileri ve Uygulamalı Bilimler Dergisi, 2 (1), 20-28.
  • Bilici Özkan V., Yönetken A., Erol A., 2021. Characterization of Physical and Mechanical Properties of Ni-Co-WC Ceramic-Metal Composites Using Ultrasonics”, 5th International Conference on Engineering Technology and Applied Sciences, 02-06 August 2021, Sarajevo, Bosnia and Herzegovina
  • Bindumadhavan P. N., Wah H. K., Prabhakar O., (2002). “Assessment of particlematrix debonding in particulate metal matrix composites using ultrasonic velocity measurements, Material Science Engineering A, 323(1-2), pp. 42-51.
  • Blitz J. and Simpson G., (1984). Ultrasonic Methods of Non-destructive Testing, Published Champman&Hall, London
  • Chen Y., Cao M.,, Xu Q., Zhu J., (2003). Electroless nickel plating on silicon carbide nanoparticles Surface and Coatings Technology, 172 , 90–94
  • D’astous F.T. and Foster F. S., (1986). Frequency dependence of ultrasound attenuation and backscatter in breast tissue, Ultrasound in Med.&Biol., 12 (10), pp. 795-808
  • Filipczynski L., Zdzislaw P., Wehr J., (1966). Ultrasonic Methods of Testing Materials, Butterworths, London, Gür C. H., (2001). Investigation of SiCp Reinforced Aluminium Matrix Composites by Shear and Longitudinal Ultrasonic Waves, INSIGHT, 43, pp.748-750.
  • Lemlikchi S., Asmani M., Djelouah H. And Schaaf P., (2017). Direct transduction method for measuring the ultrasonic attenuation in Si (111)in the frequency range 100 MHz-1 GHz, Measurement, 1002, 279-287.
  • Mylavarapu P. and Woldesenbet E., (2008). Characterization of syntactic foams- an Ultrasonic Approach, Journal of Cellular Plastics, 44 (3),2008,pp. 203-222.
  • Nagy P.B., (2003). Ultrasonic Nondestructive Evaluation: Class Notes, Part 3: Attenuation”, Dept. Aerospace Eng&Eng Mechanics,
  • Podymova N.B. and Karabutov A. A., (2017). Combined effects of reinforcement fraction and porosity on ultrasonic velocity in SiC particulate aluminum alloy matrix composites, Composites Part B, 113, pp. 138-143.
  • Saniie J., Wang T. and Bilgutay N.M., (1988). Statistical Evaluation of Backscattered Ultrasonic Grain Signals, , Journal of Acoustical Society of America, Vol.84, No.1pp.400-408.
  • Sarpün İ.H., Özkan V., Ünal R., Tuncel S., 2009. Mean grain size evaluation of tungsten- and boron-carbide composites sintered at various temperatures by ultrasonic methods”, Int. J. Microstructure and Materials Properties, V 4(1), p. 104-111.
  • Somiya, S., Inomata, Y., (1991). Silicon Carbide Ceramics, Ed. Elsevier Applied Science,
  • Trojanova Z., Lukac P., Ferkel H., Riehemann W., (2004). Internal Friction in Microcrystalline and Nanocrystalline Mg, Materials Science and Engineering A 370, pp: 154-157.
  • Yönetken, A., (2017). Production and investigation of ceramic metal composite from electroless Ni plated AlN and Al powders, International Journal of Innovative Research in Science, Engineering and Technology, 6 (10), pp. 21-26.
  • Yönetken, A. (2019). Investigation of the Production and Mechanical Properties of Silicon Carbide-Reinforced Composites. Journal of the Institute of Science and Technology, 9 (3), 1551-1558. Retrieved from https://dergipark.org.tr/tr/pub/jist/issue/47916/482983
  • Yönetken A., Erol A., (2020). Sintering and Characterization of SiC Reinforced Ni Powders in Microwave Furnace,Uluslararası Mühendislik Araştırma ve Geliştirme Dergisi,12(1), 83-89
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Vildan Özkan Bilici 0000-0002-3077-2103

Ahmet Yönetken 0000-0003-1844-7233

Yayımlanma Tarihi 7 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 35

Kaynak Göster

APA Özkan Bilici, V., & Yönetken, A. (2022). Investigation of Ultrasonic Attenuation and Hardness Relationship in Ceramic-Metal Composites. Avrupa Bilim Ve Teknoloji Dergisi(35), 541-547. https://doi.org/10.31590/ejosat.1056174