Araştırma Makalesi
BibTex RIS Kaynak Göster

El Hareketlerinden İşaret Dilini Algılayıp Yazıya Dönüştürme

Yıl 2022, Sayı: 36, 32 - 35, 31.05.2022
https://doi.org/10.31590/ejosat.1097389

Öz

Tasarlanacak işaret dili tanıma projesinin güncel teknolojiler kullanılarak optimize biçimde gerçeklenmesi amaçlanmıştır. Projenin makine öğrenmesi bölümü Keras ve Sklearn kullanılarak TensorFlow üzerinden yapılacaktır. TensorFlow, ilerleyen aşamalarda projeyi mobil bir ortama taşıma ihtimali göz önünde bulundurularak seçilmiştir. Kullanılacak nesne tanıma yöntemi MediaPipe Holistic olarak seçilmiştir.

Kaynakça

  • Ko, S.-K., Kim, C. J., Jung, H., & Cho, C. (2019). Neural Sign Language Translation Based on Human Keypoint Estimation. Applied Sciences, 9(13), 2683. doi:10.3390/app9132683
  • RWTH-PHOENIX-2014-T veri seti, https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/
  • Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Hermann Ney, and Richard Bowden. Neural Sign Language Translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
  • Konstantinidis, D., Dimitropoulos, K., & Daras, P. (2018). Sıgn Language Recognıtıon Based On Hand And Body Skeletal Data. 2018- 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON). doi:10.1109/3dtv.2018.8478467
  • Hosain, A. A., Santhalingam, P. S., Pathak, P., Rangwala, H., & Kosecka, J. (2020). FineHand: Learning Hand Shapes for American Sign Language Recognition. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020). doi:10.1109/fg47880.2020.00062
  • Zhang, Z., Pu, J., Zhuang, L., Zhou, W., & Li, H. (2019). Continuous Sign Language Recognition via Reinforcement Learning. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8802972
  • Pytorch vs Tensorflow 2021, https://towardsdatascience.com/pytorch-vs-tensorflow-2021-d403504d7bc3

Detecting Sign Language from Hand Gestures and Translating it into Text

Yıl 2022, Sayı: 36, 32 - 35, 31.05.2022
https://doi.org/10.31590/ejosat.1097389

Öz

The sign language recognition project to be designed is aimed to be realized in an optimized way using up-to-date technologies. The machine learning part of the project will be done over TensorFlow using Keras and Sklearn. TensorFlow was chosen considering the possibility of moving the project to a mobile environment in the future. The object recognition method to be used was chosen as MediaPipe Holistic.

Kaynakça

  • Ko, S.-K., Kim, C. J., Jung, H., & Cho, C. (2019). Neural Sign Language Translation Based on Human Keypoint Estimation. Applied Sciences, 9(13), 2683. doi:10.3390/app9132683
  • RWTH-PHOENIX-2014-T veri seti, https://www-i6.informatik.rwth-aachen.de/~koller/RWTH-PHOENIX-2014-T/
  • Necati Cihan Camgoz, Simon Hadfield, Oscar Koller, Hermann Ney, and Richard Bowden. Neural Sign Language Translation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018.
  • Konstantinidis, D., Dimitropoulos, K., & Daras, P. (2018). Sıgn Language Recognıtıon Based On Hand And Body Skeletal Data. 2018- 3DTV-Conference: The True Vision - Capture, Transmission and Display of 3D Video (3DTV-CON). doi:10.1109/3dtv.2018.8478467
  • Hosain, A. A., Santhalingam, P. S., Pathak, P., Rangwala, H., & Kosecka, J. (2020). FineHand: Learning Hand Shapes for American Sign Language Recognition. 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition (FG 2020). doi:10.1109/fg47880.2020.00062
  • Zhang, Z., Pu, J., Zhuang, L., Zhou, W., & Li, H. (2019). Continuous Sign Language Recognition via Reinforcement Learning. 2019 IEEE International Conference on Image Processing (ICIP). doi:10.1109/icip.2019.8802972
  • Pytorch vs Tensorflow 2021, https://towardsdatascience.com/pytorch-vs-tensorflow-2021-d403504d7bc3
Toplam 7 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Pınar Kırcı 0000-0002-0442-0235

Burçin Berk Durusan 0000-0002-6510-8122

Baha Özşahin 0000-0002-8463-5737

Erken Görünüm Tarihi 11 Nisan 2022
Yayımlanma Tarihi 31 Mayıs 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 36

Kaynak Göster

APA Kırcı, P., Durusan, B. B., & Özşahin, B. (2022). El Hareketlerinden İşaret Dilini Algılayıp Yazıya Dönüştürme. Avrupa Bilim Ve Teknoloji Dergisi(36), 32-35. https://doi.org/10.31590/ejosat.1097389