Bu çalışmada, bilişim teknolojileri öğretmenlerinin blok tabanlı kodlama araçlarının kullanımına ilişkin öz yeterlik inançlarının makine öğrenmesi ve derin öğrneme yöntemleri ile sınıflandırılması amaçlanmıştır. Veri toplama aracı olarak daha önceden geliştirilmiş likert tipinde maddelerden oluşan T-SECT ölçeği Türkçeye adapte edilerek kullanılmıştır. Veri seti bilişim teknolojileri öğretmenlerinden oluşan 190 örnek ve 39 öznitelikten oluşmaktadır. Örnek sayısının azlığı nedeniyle dengesiz veri sorunundan kaçınmak için SMOTE yöntemi kullanılarak veri çoğaltılmış ve örnek sayısı 262 ye çıkarılmıştır. Veri seti WEKA yazılımına aktarılarak üzerinde makine öğrenmesi yöntemleri ve Evrişimsel Sinir Ağı (ESA) kullanılmıştır. Bu amaç doğrultusunda J48, Random Forest (RF), K-Star, Multilayer Perceptron (MLP), NaivesBayes, SMO ve IBK yöntemleri ile sınıflandırma başarısı hesaplanmıştır. Veri seti üzerinde en yüksek sınıflandırma başarısı gösteren makine öğrenmesi yöntemleri SMO, MLP, IBK, J48 ve RF olarak bulunmuştur. ESA ile yapılan sınıflandırmada makine öğrenmesi yöntemlerinden daha başarılı sonuçlar elde edilmiştir. Bilişim teknolojileri öğretmenlerinin öz yeterlik inançları ESA kullanılarak %99.30 doğruluk oranıyla başarılı bir şekilde sınıflandırılmıştır.
Makine öğrenmesi Blok tabanlı kodlama Özyeterlik inancı Bilgi işlemsel düşünme Evrişimsel sinir ağları
-
-
-
In this study, it is aimed to classify the self-efficacy beliefs of information technology teachers regarding the use of block-based coding tools by machine learning and deep learning methods. As a data collection tool, the T-SECT scale, which consists of previously developed likert-type items, was adapted to Turkish and used. The data set consists of 190 examples and 39 attributes of information technology teachers. In order to avoid the problem of unbalanced data due to the small number of samples, the data was amplified using the SMOTE method and the number of samples was increased to 262. The data set was transferred to WEKA software and machine learning methods and Convolutional Neural Network (CNN) were used on it. For this purpose, classification success was calculated with J48, Random Forest (RF), K-Star, Multilayer-Perceptron (MLP), NaivesBayes, SMO and IBK methods. The machine learning methods with the highest classification success on the data set were found to be SMO, MLP, IBK, J48 and RF. In the classification made with CNN, more successful results were obtained than the machine learning methods. Self-efficacy beliefs of information technology teachers were successfully classified using CNN with an accuracy rate of 99.30%.
Machine learning Block-based coding Computational thinking Self-efficacy belief Convolutional Neural Networks.
-
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Makaleler |
Yazarlar | |
Proje Numarası | - |
Erken Görünüm Tarihi | 11 Nisan 2022 |
Yayımlanma Tarihi | 31 Mayıs 2022 |
Yayımlandığı Sayı | Yıl 2022 Sayı: 36 |