Araştırma Makalesi
BibTex RIS Kaynak Göster

Yükseltici DA-DA Dönüştürücü için Bozucu Bastırma Kontrolü Metoduna Alternatif Bir Yaklaşım

Yıl 2022, Sayı: 37, 108 - 112, 15.07.2022
https://doi.org/10.31590/ejosat.1136558

Öz

Bu çalışma, ikinci derece transfer fonksiyonu ile ifade edilmiş yükseltici konvertör sistemi için aktif bozucu bastırma kontrolü (ABBK) tekniğini ortaya koymaktadır. Daha sonra hem toplam bozulmayı hem de sistem değişkenlerini aynı anda tahmin etmek için tasarlanmış lineer genişletilmiş durum gözleyicisini bünyesinde barındıran doğrusal aktif bozucu bastırma kontrol (DABBK) tekniği dönüştürücüye uygulanmıştır. Bu bağlamda, bir kutup yerleştirme tasarımı, DABBK’nın parametre ayarlama zorluğunu azaltmak için ayar parametrelerinin sayısını ikiye indirmektedir. Kontrol şeması izleme kabiliyetini arttırmaktadır. Kontrol strajesinin etkinliğini vurgulamak için sayısal bir örnek verilmiştir. İzleme performansı ve basamak tepkisi MATLAB/Simulink programı kullanılarak simülasyonla gözlemlenmiştir. Çalışmada kullanılan algoritmanın PID kontrol tekniği yerine yükseltici dönüştürücü görev çevrim oranı ayarlanmasının alternatif yolu olduğu gösterilmiştir. Kontrolcünün performansı bir takım performans indisleri ile değerlendirilmiştir. Tablo haline getirilmiş sonuçlar, kontrolcünün etkinliğini doğrular niteliktedir.

Kaynakça

  • Chang, X., Li, Y., Zhang, W., Wang, N., & Xue, W. (2015). Active Disturbance Rejection Control for a Flywheel Energy Storage System. IEEE Transactions on Industrial Electronics,62(912),991–1001.
  • Criens, C. H. A., Willems, F. P. T., Van Keulen, T. A. C., & Steinbuch, M. (2015). Disturbance rejection in diesel engines for low emissions and high fuel efficiency. IEEE Transactions on Control Systems Technology, 23(2), 662–669.
  • Eker, D. & Özbek, N. S. (2021). An Assessment of Active Disturbance Rejection Technique From a Theoretical Perspective. Avrupa Bilim ve Teknoloji Dergisi, Ejosat Özel Sayı 2021 (ISMSIT), 284-291.
  • Gao, Z. (2003). Scaling and Bandwidth-Parameterization based Controller Tuning. Proceedings of the American Control Conference, 6, 4989–4996.
  • Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.
  • Herbst, G. (2013). A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners. Electronics, 2(4), 246–279.
  • Liu, S., You, H., Li, J., Kai, S., & Yang, L. (2021). Active disturbance rejection control based distributed secondary control for a low-voltage DC microgrid. Sustainable Energy, Grids and Networks, 27, 100515.
  • Oucheriah, S., & Guo, L. (2013). PWM-based adaptive sliding-mode control for boost DC-DC converters. IEEE Transactions on Industrial Electronics, 60(8), 3291–3294.
  • Shi, G., Wu, Z., He, T., Li, D., Ding, Y., & Liu, S. (2020). Shaft speed control of the gas turbine based on active disturbance rejection control. IFAC-PapersOnLine, 53(2), 12523–12529.
  • Wang, F., Wang, R.-J., & Liu, E.-H. (2019). Analysis and Tuning for Active Disturbance Rejection Control. Mathematical Problems in Engineering, 2019, 1–11.
  • Wu, J., & Lu, Y. (2019). Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load. IEEE Access, 7, 50797–50807.
  • Zhou, X., Liu, Q., Ma, Y., & Xie, B. (2021). DC-Link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control. IEEE Access, 9, 9884–9894.
  • Yuan, C., Zhou, X., & Ma, Y. (2022). DC Bus Voltage Control of Wind Power Inverter Based on First-Order LADRC. IEEE Access, 10, 3263–3274.
  • Abdelmalek, S., Dali, A., Bakdi, A., & Bettayeb, M. (2020). Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters. Energy, 213, 118816.
  • Barzegar-Kalashani, M., & Mahmud, M. A. (2022). A linear hybrid active disturbance rejection controller design to extenuate powerline bushfires in resonant grounded distribution power systems. International Journal of Electrical Power & Energy Systems, 142(PB), 108192.
  • Feng, X., Xie, S., Zhang, Z., Chen, Y., Qin, H., & Zhao, C. (2022). Research on speed loop control of IPMSM based on Fuzzy linear active disturbance rejection control. Energy Reports, 8, 804–812.

An Alternative Approach of Disturbance Rejection Control Methodology to DC-DC Boost Converter

Yıl 2022, Sayı: 37, 108 - 112, 15.07.2022
https://doi.org/10.31590/ejosat.1136558

Öz

This study presents an active disturbance rejection control (ADRC) technique for a boost converter system which is represented with a second - order transfer function. Then, linear active disturbance rejection control (LADRC) technique, wherein a linear extended state observer (LESO) is constructed to estimate both the total disturbance and the system state at the same time, has been applied to the converter. In this context, a pole placement design reduces the number of tuning parameters of LADRC to two to lessen the difficulty of parameter adjustment. The control scheme increases the tracking capability. A numerical example is provided to highlight the effectiveness of the control strategy. The tracking performance and step response are observed via several simulation studies using MATLAB/Simulink tool. It is demonstrated that the algorithm used in study is alternative way of tuning duty cycle of the boost converter instead of PID control technique. The performance of the controller is evaluated with a number of performance metrics. The tabulated results validate the controller's efficacy.

Kaynakça

  • Chang, X., Li, Y., Zhang, W., Wang, N., & Xue, W. (2015). Active Disturbance Rejection Control for a Flywheel Energy Storage System. IEEE Transactions on Industrial Electronics,62(912),991–1001.
  • Criens, C. H. A., Willems, F. P. T., Van Keulen, T. A. C., & Steinbuch, M. (2015). Disturbance rejection in diesel engines for low emissions and high fuel efficiency. IEEE Transactions on Control Systems Technology, 23(2), 662–669.
  • Eker, D. & Özbek, N. S. (2021). An Assessment of Active Disturbance Rejection Technique From a Theoretical Perspective. Avrupa Bilim ve Teknoloji Dergisi, Ejosat Özel Sayı 2021 (ISMSIT), 284-291.
  • Gao, Z. (2003). Scaling and Bandwidth-Parameterization based Controller Tuning. Proceedings of the American Control Conference, 6, 4989–4996.
  • Han, J. (2009). From PID to active disturbance rejection control. IEEE Transactions on Industrial Electronics, 56(3), 900–906.
  • Herbst, G. (2013). A Simulative Study on Active Disturbance Rejection Control (ADRC) as a Control Tool for Practitioners. Electronics, 2(4), 246–279.
  • Liu, S., You, H., Li, J., Kai, S., & Yang, L. (2021). Active disturbance rejection control based distributed secondary control for a low-voltage DC microgrid. Sustainable Energy, Grids and Networks, 27, 100515.
  • Oucheriah, S., & Guo, L. (2013). PWM-based adaptive sliding-mode control for boost DC-DC converters. IEEE Transactions on Industrial Electronics, 60(8), 3291–3294.
  • Shi, G., Wu, Z., He, T., Li, D., Ding, Y., & Liu, S. (2020). Shaft speed control of the gas turbine based on active disturbance rejection control. IFAC-PapersOnLine, 53(2), 12523–12529.
  • Wang, F., Wang, R.-J., & Liu, E.-H. (2019). Analysis and Tuning for Active Disturbance Rejection Control. Mathematical Problems in Engineering, 2019, 1–11.
  • Wu, J., & Lu, Y. (2019). Adaptive Backstepping Sliding Mode Control for Boost Converter With Constant Power Load. IEEE Access, 7, 50797–50807.
  • Zhou, X., Liu, Q., Ma, Y., & Xie, B. (2021). DC-Link voltage research of photovoltaic grid-connected inverter using improved active disturbance rejection control. IEEE Access, 9, 9884–9894.
  • Yuan, C., Zhou, X., & Ma, Y. (2022). DC Bus Voltage Control of Wind Power Inverter Based on First-Order LADRC. IEEE Access, 10, 3263–3274.
  • Abdelmalek, S., Dali, A., Bakdi, A., & Bettayeb, M. (2020). Design and experimental implementation of a new robust observer-based nonlinear controller for DC-DC buck converters. Energy, 213, 118816.
  • Barzegar-Kalashani, M., & Mahmud, M. A. (2022). A linear hybrid active disturbance rejection controller design to extenuate powerline bushfires in resonant grounded distribution power systems. International Journal of Electrical Power & Energy Systems, 142(PB), 108192.
  • Feng, X., Xie, S., Zhang, Z., Chen, Y., Qin, H., & Zhao, C. (2022). Research on speed loop control of IPMSM based on Fuzzy linear active disturbance rejection control. Energy Reports, 8, 804–812.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Deha Eker 0000-0002-8457-1438

Necdet Sinan Özbek 0000-0002-7184-9015

Özgür Çelik 0000-0002-7683-2415

Erken Görünüm Tarihi 30 Haziran 2022
Yayımlanma Tarihi 15 Temmuz 2022
Yayımlandığı Sayı Yıl 2022 Sayı: 37

Kaynak Göster

APA Eker, D., Özbek, N. S., & Çelik, Ö. (2022). An Alternative Approach of Disturbance Rejection Control Methodology to DC-DC Boost Converter. Avrupa Bilim Ve Teknoloji Dergisi(37), 108-112. https://doi.org/10.31590/ejosat.1136558