Araştırma Makalesi
BibTex RIS Kaynak Göster

On Laplacian Spectrum of Desargues and Pappus Configurations

Yıl 2023, Sayı: 52, 289 - 293, 15.12.2023

Öz

In this paper, we study Laplacian spectrum of Desargues and Pappus configurations and present some basic spectral properties of these hypergraphs.

Kaynakça

  • Akça, Z., Günaltılı, I. & Özgür G. (2006 ). On the Fano subplanes of the left semifield plane of order 9. Hacettepe Journal of Mathematics and Statistics, 35(1), 55–61.
  • Ballico, E., Favacchio, G., Guardo, E. & Milazzo, L.(2020). Steiner systems and configurations of points. Designs, Codes and Cryptography, 89, 199–219.
  • Berge, C. (1970). Graphes et hypergraphes. Dunod, Paris.
  • Berge, C. (1973). Graphs and hypergraphs. North-Holland publishing company Amsterdam, 7.
  • Braun, M., Etzion, T., Ostergard,.P., Vardy, A. & Wassermann, A. (2016). Existence of q – analogs of Steiner system. Forum of Mathematics, Pi, 4. doi:10.1017/fmp.2016.5
  • Bretto, A. (2013). Hypergraph theory: An introduction. Mathematical Engineering, Springer.
  • Fallat, S.M., Kirkland, S.J., Molitierno, J.J. & Neumann, M. (2005). On graphs whose Laplacian matrices have distinct integer eigenvalues. Journal of Graph Theory, 50(2), 162–174.
  • Grünbaum, B. (2009). Configurations of the Points and Lines, Graduate Studies in Mathematics, American Mathematical Soc., 103.
  • Molitierno, J.J., Fallat, M.S., Kirkland, S. & Neumann, M. (2005). On graphs whose Laplacian matrices have distinct integer eigenvalues. Journal of Graph Theory, 50(2), 162-174.
  • Naik, N.R., Rao, S.B., Shrikhande S.S. & Singhi N.M. (1982). Intersection graphs of k-uniform linear hypergraphs. European Journal of Combinatorics, (3), 159–172.
  • Ouvrard, X. (2020). Hypergraphs: an introduction and review. (arXiv:2002.05014). arXiv. https://doi.org/10.48550/arXiv.2002.05014
  • Paige, L. & Wexler, C. (1953). A canonical form for incidence matrices of finite projective planes and their associated latin squares. Portugaliae Mathematica, 12(3), 105–112.
  • Zakiyyah, A.Y. (2021). Laplacian integral of particular Steiner system. Engineering, Mathematics and Computer Science Journal, 3(1), 31–32.

Desargues ve Pappus Konfigürasyonlarının Laplasyan Spektrumu Üzerine

Yıl 2023, Sayı: 52, 289 - 293, 15.12.2023

Öz

Bu makalede, Desargues ve Pappus konfigurasyonlarının Laplasyan spektrumlarını inceliyor ve bu hipergrafların bazı temel spektrum özelliklerini sunuyoruz.

Kaynakça

  • Akça, Z., Günaltılı, I. & Özgür G. (2006 ). On the Fano subplanes of the left semifield plane of order 9. Hacettepe Journal of Mathematics and Statistics, 35(1), 55–61.
  • Ballico, E., Favacchio, G., Guardo, E. & Milazzo, L.(2020). Steiner systems and configurations of points. Designs, Codes and Cryptography, 89, 199–219.
  • Berge, C. (1970). Graphes et hypergraphes. Dunod, Paris.
  • Berge, C. (1973). Graphs and hypergraphs. North-Holland publishing company Amsterdam, 7.
  • Braun, M., Etzion, T., Ostergard,.P., Vardy, A. & Wassermann, A. (2016). Existence of q – analogs of Steiner system. Forum of Mathematics, Pi, 4. doi:10.1017/fmp.2016.5
  • Bretto, A. (2013). Hypergraph theory: An introduction. Mathematical Engineering, Springer.
  • Fallat, S.M., Kirkland, S.J., Molitierno, J.J. & Neumann, M. (2005). On graphs whose Laplacian matrices have distinct integer eigenvalues. Journal of Graph Theory, 50(2), 162–174.
  • Grünbaum, B. (2009). Configurations of the Points and Lines, Graduate Studies in Mathematics, American Mathematical Soc., 103.
  • Molitierno, J.J., Fallat, M.S., Kirkland, S. & Neumann, M. (2005). On graphs whose Laplacian matrices have distinct integer eigenvalues. Journal of Graph Theory, 50(2), 162-174.
  • Naik, N.R., Rao, S.B., Shrikhande S.S. & Singhi N.M. (1982). Intersection graphs of k-uniform linear hypergraphs. European Journal of Combinatorics, (3), 159–172.
  • Ouvrard, X. (2020). Hypergraphs: an introduction and review. (arXiv:2002.05014). arXiv. https://doi.org/10.48550/arXiv.2002.05014
  • Paige, L. & Wexler, C. (1953). A canonical form for incidence matrices of finite projective planes and their associated latin squares. Portugaliae Mathematica, 12(3), 105–112.
  • Zakiyyah, A.Y. (2021). Laplacian integral of particular Steiner system. Engineering, Mathematics and Computer Science Journal, 3(1), 31–32.
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Cebirsel ve Diferansiyel Geometri
Bölüm Makaleler
Yazarlar

Burçin Usta 0000-0002-3183-0619

Ayşe Bayar 0000-0002-2210-5423

Erken Görünüm Tarihi 29 Aralık 2023
Yayımlanma Tarihi 15 Aralık 2023
Gönderilme Tarihi 13 Ekim 2023
Kabul Tarihi 14 Aralık 2023
Yayımlandığı Sayı Yıl 2023 Sayı: 52

Kaynak Göster

APA Usta, B., & Bayar, A. (2023). On Laplacian Spectrum of Desargues and Pappus Configurations. Avrupa Bilim Ve Teknoloji Dergisi(52), 289-293.