Araştırma Makalesi
BibTex RIS Kaynak Göster

Yıl 2025, Cilt: 15 Sayı: 1, 21 - 28, 01.07.2025

Öz

Proje Numarası

no

Kaynakça

  • [1] Jain, P. C., Shankar, R., and Singh, T. V. (1993). Numerical Solution Of Regularized Long-Wave Equation. Communications in Numerical Methods in Engineering, 9, 579-586.
  • [2] Peregrine, D. H. (1966). Calculations of the development of an undular bore. J. Fluid Mech., 25(2), 321-330
  • [3] Rasoulizadeh, M. N., Nikan, O., and Avazzadeh, Z. (2020). The impact of LRBFFD on the solutions of the nonlinear regularized long wave equation. Mathematical Sciences, 15, 365–376.
  • [4] Oruç, Ö., Esen, A., and Bulut, F. (2020). A Strang Splitting Approach Combined with Chebyshev Wavelets to Solve the Regularized Long-Wave Equation Numerically. Mediterr. J. Math., 17, 140
  • [5] Irk, D., Keskin Yıldız, P., and Zorşahin Görgülü, M. (2019). Quartic trigonometric B-spline algorithm for numerical solution of the regularized long wave equation. 43, 112-125.
  • [6] Yağmurlu, N. M., and Karakaş, A. S. (2020). Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin–Graves type linearization. Numerical Methods for Partial Differential Equations, 36(5), 1170-1183.
  • [7] Yağmurlu, N. M., and Karakaş, A. S. (2022). A novel perspective for simulations of the MEW equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization. Computational methods for Differential Equations, 10(4), 1046-1058
  • [8] Kutluay, S., Yağmurlu, N. M., and Karakaş, A. S. (2024). A novel perspective for simulations of the Modified Equal-Width Wave equation by cubic Hermite B-spline collocation method. Wave Motion, 129, 103342.
  • [9] Kutluay, S., Yağmurlu, N. M., and Karakaş, A. S. (2024). A Robust Quintic Hermite Collocation Method for One-Dimensional Heat Conduction Equation. Journal of Mathematical Sciences and Modelling, 7(2), 82-89.
  • [10] Dağ, I., Irk, D., Kaçmaz, O., and Adar, N. (2016). Trigonometric B-spline collocation algorithm for solving the RLW equation. Applied and Computational Mathematics, 15(1), 96-105.
  • [11] N.G. Chegini A. Salaripanah · R. Mokhtari, D. Isvand. Numerical solution of the regularized long wave equation using nonpolynomial splines, Nonlinear Dyn 69 (2012) 459–471.
  • [12] Strang, G. (1968). On The Construction and Comparison Of Difference Schemes. SIAM J. Numer. Anal., 5(3), 506-517.
  • [13] Holden, H., Karlsen, K. H., Lie, K. A., & Risebro, N. H. (2010). Splitting Methods for Partial Differential Equations with Rough Solutions. European Mathematical Societyş.
  • [14] Geiser, J. (2011). Iterative Splitting Methods for Differential Equations. CHAPMAN & HALL/CRC. Numerical Analysis and Scientific Computing. London
  • [15] Hundsdorfer, W., & Verwer, J. (2003). Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (First Edition). Springer-Verlag Berlin Heidelberg, New York.
  • [16] Dia, B. O., & Schatzman, M. (1996). Commutateurs De Certains Semi-Groupes Holomorphes Et Applications Aux Directions Alternees. Math. Modelling Num. Anal., 30(3), 343-383.
  • [17] Walz, G. (1997). Identities for trigonometric B-splines with an application to curve design. BIT, 37, 189-201.
  • [18] Koch, P. E. (1988). Multivariate trigonometric B-splines. J. Approx. Theory, 54, 162-168.
  • [19] VonNeumann, J. and Richtmyer, R. D. (1950). A Method for the Numerical Calculation of Hydrodynamic Shocks, J. Appl. Phys., 21, 232-237.
  • [20] Sportisse, B. (2000). An Analysis of Operator Splitting Techniques in the Stiff Case. Journal of Computational Physics 161, 140–168.
  • [21] Blanes, S., Casas, F., and Ros, J. (1999). Extrapolation Of Symplectic Integrators. Celest. Mech. & Dyn. Astron., 75, 149–161.
  • [22] Blanes, S., and Casas, F. (2016). A Concise Introduction to Geometric Numerical Integration. CRC Press LLC.
  • [23] Dağ, I., Saka, B., and Irk, D. (2004). Application of cubic B-splines for numerical solution of the RLW equation. Applied Mathematics and Computation, 159, 373–389.
  • [24] Saka, B., Şahin, A., and Dağ, I. (2011). B-Spline Collocation Algorithms for Numerical Solution of the RLW Equation. Numerical Methods for Partial Differential Equations, 27(3), 581-607.
  • [25] Esen, A., and Kutluay, S. (2006). Application of a lumped Galerkin method to the regularized long wave equation. Applied Mathematics and Computation, 174, 833–845.
  • [26] Zaki, S.I. (2001). Solitary waves of the splitted RLW equation. Computer Physics Communications, 138, 80–91.
  • [27] Doğan, A. (2002). Numerical solution of RLW equation using linear finite elements within Galerkin’s method. Applied Mathematical Modelling, 26, 771–783.
  • [28] Dağ, I., Saka, B., and Irk, D. (2006). Galerkin method for the numerical solution of the RLW equation using quintic B-splines. Journal of Computational and Applied Mathematics, 190, 532–547.
  • [29] Gardner, L. R. T., Gardner, G. A., & Dağ, I. (1995). A B-spline finite element method for the regularized long wave equation. Commun Numer Meth Eng.,11, 59–68.
  • [30] Mei, L., & Chen, Y. (2012). Explicit multistep method for the numerical solution of RLW equation. Applied Mathematics and Computation, 218, 9547–9554.
  • [31] Dağ, I., Doğan, A., and Saka, B. (2003). B-Spline Collocation Methods For Numerical Solutions Of The Rlw Equation. International Journal of Computer Mathematics, 80(6), 743-757
  • [32] Saka, B., and Dağ, I. (2005). A collocation method for the numerical solution of the RLW equation using cubic B-spline basis. Arab J Sci Eng., 30, 39–50.
  • [33] Saka, B., and Dağ, I. (2008). A numerical solution of the RLW equation by Galerkin method using quartic B-splines. Communications in Numerical Methods In Engineering, 24, 1339–1361.
  • [34] Dağ, I., and Özer, M. N. (2001). Approximation of the RLW equation by the least square cubic B-spline Finite element method. Applied Mathematical Modelling, 25, 221–231.
  • [35] Saka, B., Dağ, I., & Doğan, A. (2004). Galerkin method for the numerical solution of the RLW equation using quadratic B-splines. International Journal of Computer Mathematics, 81(6), 727–739
  • [36] Mokhtari, R., and Mohammadi, M. (2010). Numerical solution of GRLW equation using Sinc-collocation method. Computer Physics Communications, 181, 1266–1274.
  • [37] Saka, B., and Dağ, I. (2007). Quartic B-Spline Collocation Algorithms for Numerical Solution of the RLW Equation. Numerical Methods for Partial Differential Equations, 23(3), 731-751.
  • [38] Oruç, O., Bulut, F.,and Esen, A. (2016). Numerical Solutions of Regularized Long Wave Equation by Haar Wavelet Method. Mediterr. J. Math., 13, 3235–3253.
  • [39] Raslan, K.R. (2005). A computational method for the regularized long wave (RLW) equation. Applied Mathematics and Computation, 167, 1101–1118
  • [40] Kutluay, S., and Esen, A. (2006). A Finite Difference Solution of The Regularized Long–Wave Equation. Mathematical Problems in Engineering, 2006, 1–14.
  • [41] Islam, S. L., Haq, S., and Ali, A. (2009). A meshfree method for the numerical solution of the RLW equation. Journal of Computational and Applied Mathematics, 223, 997–1012.

Some Numerical Techniques for Solution of Nonlinear Regularized Long Wave Equation

Yıl 2025, Cilt: 15 Sayı: 1, 21 - 28, 01.07.2025

Öz

In this study, numerical solutions of the one-dimensional Regularized Long Wave (RLW) equation have been investigated. For this purpose, the RLW equation is divided into two sub equations, one linear and the other nonlinear, according to the time term. Then, algebraic equation systems have been obtained by writing the derivative approximations obtained with the help of cubic trigonometric B-spline base functions and Crank-Nicolson finite difference approximations to the derivatives in each sub-equation. To obtain numerical solutions of the RLW equation, these systems are solved the Strang splitting algorithm, Ext4, and Ext6 techniques created by Richardson extrapolation of the Strang algorithm have used to increase the accuracy of the solutions. In order to investigate the effectiveness of these methods, single solitary wave motion and the interaction of two solitary waves problems, which are most commonly used in the literature, have been taken into consideration. In addition, the stability analysis of the Strang algorithm have been investigated by the von Neumann method.

Proje Numarası

no

Kaynakça

  • [1] Jain, P. C., Shankar, R., and Singh, T. V. (1993). Numerical Solution Of Regularized Long-Wave Equation. Communications in Numerical Methods in Engineering, 9, 579-586.
  • [2] Peregrine, D. H. (1966). Calculations of the development of an undular bore. J. Fluid Mech., 25(2), 321-330
  • [3] Rasoulizadeh, M. N., Nikan, O., and Avazzadeh, Z. (2020). The impact of LRBFFD on the solutions of the nonlinear regularized long wave equation. Mathematical Sciences, 15, 365–376.
  • [4] Oruç, Ö., Esen, A., and Bulut, F. (2020). A Strang Splitting Approach Combined with Chebyshev Wavelets to Solve the Regularized Long-Wave Equation Numerically. Mediterr. J. Math., 17, 140
  • [5] Irk, D., Keskin Yıldız, P., and Zorşahin Görgülü, M. (2019). Quartic trigonometric B-spline algorithm for numerical solution of the regularized long wave equation. 43, 112-125.
  • [6] Yağmurlu, N. M., and Karakaş, A. S. (2020). Numerical solutions of the equal width equation by trigonometric cubic B-spline collocation method based on Rubin–Graves type linearization. Numerical Methods for Partial Differential Equations, 36(5), 1170-1183.
  • [7] Yağmurlu, N. M., and Karakaş, A. S. (2022). A novel perspective for simulations of the MEW equation by trigonometric cubic B-spline collocation method based on Rubin-Graves type linearization. Computational methods for Differential Equations, 10(4), 1046-1058
  • [8] Kutluay, S., Yağmurlu, N. M., and Karakaş, A. S. (2024). A novel perspective for simulations of the Modified Equal-Width Wave equation by cubic Hermite B-spline collocation method. Wave Motion, 129, 103342.
  • [9] Kutluay, S., Yağmurlu, N. M., and Karakaş, A. S. (2024). A Robust Quintic Hermite Collocation Method for One-Dimensional Heat Conduction Equation. Journal of Mathematical Sciences and Modelling, 7(2), 82-89.
  • [10] Dağ, I., Irk, D., Kaçmaz, O., and Adar, N. (2016). Trigonometric B-spline collocation algorithm for solving the RLW equation. Applied and Computational Mathematics, 15(1), 96-105.
  • [11] N.G. Chegini A. Salaripanah · R. Mokhtari, D. Isvand. Numerical solution of the regularized long wave equation using nonpolynomial splines, Nonlinear Dyn 69 (2012) 459–471.
  • [12] Strang, G. (1968). On The Construction and Comparison Of Difference Schemes. SIAM J. Numer. Anal., 5(3), 506-517.
  • [13] Holden, H., Karlsen, K. H., Lie, K. A., & Risebro, N. H. (2010). Splitting Methods for Partial Differential Equations with Rough Solutions. European Mathematical Societyş.
  • [14] Geiser, J. (2011). Iterative Splitting Methods for Differential Equations. CHAPMAN & HALL/CRC. Numerical Analysis and Scientific Computing. London
  • [15] Hundsdorfer, W., & Verwer, J. (2003). Numerical Solution of Time-Dependent Advection-Diffusion-Reaction Equations (First Edition). Springer-Verlag Berlin Heidelberg, New York.
  • [16] Dia, B. O., & Schatzman, M. (1996). Commutateurs De Certains Semi-Groupes Holomorphes Et Applications Aux Directions Alternees. Math. Modelling Num. Anal., 30(3), 343-383.
  • [17] Walz, G. (1997). Identities for trigonometric B-splines with an application to curve design. BIT, 37, 189-201.
  • [18] Koch, P. E. (1988). Multivariate trigonometric B-splines. J. Approx. Theory, 54, 162-168.
  • [19] VonNeumann, J. and Richtmyer, R. D. (1950). A Method for the Numerical Calculation of Hydrodynamic Shocks, J. Appl. Phys., 21, 232-237.
  • [20] Sportisse, B. (2000). An Analysis of Operator Splitting Techniques in the Stiff Case. Journal of Computational Physics 161, 140–168.
  • [21] Blanes, S., Casas, F., and Ros, J. (1999). Extrapolation Of Symplectic Integrators. Celest. Mech. & Dyn. Astron., 75, 149–161.
  • [22] Blanes, S., and Casas, F. (2016). A Concise Introduction to Geometric Numerical Integration. CRC Press LLC.
  • [23] Dağ, I., Saka, B., and Irk, D. (2004). Application of cubic B-splines for numerical solution of the RLW equation. Applied Mathematics and Computation, 159, 373–389.
  • [24] Saka, B., Şahin, A., and Dağ, I. (2011). B-Spline Collocation Algorithms for Numerical Solution of the RLW Equation. Numerical Methods for Partial Differential Equations, 27(3), 581-607.
  • [25] Esen, A., and Kutluay, S. (2006). Application of a lumped Galerkin method to the regularized long wave equation. Applied Mathematics and Computation, 174, 833–845.
  • [26] Zaki, S.I. (2001). Solitary waves of the splitted RLW equation. Computer Physics Communications, 138, 80–91.
  • [27] Doğan, A. (2002). Numerical solution of RLW equation using linear finite elements within Galerkin’s method. Applied Mathematical Modelling, 26, 771–783.
  • [28] Dağ, I., Saka, B., and Irk, D. (2006). Galerkin method for the numerical solution of the RLW equation using quintic B-splines. Journal of Computational and Applied Mathematics, 190, 532–547.
  • [29] Gardner, L. R. T., Gardner, G. A., & Dağ, I. (1995). A B-spline finite element method for the regularized long wave equation. Commun Numer Meth Eng.,11, 59–68.
  • [30] Mei, L., & Chen, Y. (2012). Explicit multistep method for the numerical solution of RLW equation. Applied Mathematics and Computation, 218, 9547–9554.
  • [31] Dağ, I., Doğan, A., and Saka, B. (2003). B-Spline Collocation Methods For Numerical Solutions Of The Rlw Equation. International Journal of Computer Mathematics, 80(6), 743-757
  • [32] Saka, B., and Dağ, I. (2005). A collocation method for the numerical solution of the RLW equation using cubic B-spline basis. Arab J Sci Eng., 30, 39–50.
  • [33] Saka, B., and Dağ, I. (2008). A numerical solution of the RLW equation by Galerkin method using quartic B-splines. Communications in Numerical Methods In Engineering, 24, 1339–1361.
  • [34] Dağ, I., and Özer, M. N. (2001). Approximation of the RLW equation by the least square cubic B-spline Finite element method. Applied Mathematical Modelling, 25, 221–231.
  • [35] Saka, B., Dağ, I., & Doğan, A. (2004). Galerkin method for the numerical solution of the RLW equation using quadratic B-splines. International Journal of Computer Mathematics, 81(6), 727–739
  • [36] Mokhtari, R., and Mohammadi, M. (2010). Numerical solution of GRLW equation using Sinc-collocation method. Computer Physics Communications, 181, 1266–1274.
  • [37] Saka, B., and Dağ, I. (2007). Quartic B-Spline Collocation Algorithms for Numerical Solution of the RLW Equation. Numerical Methods for Partial Differential Equations, 23(3), 731-751.
  • [38] Oruç, O., Bulut, F.,and Esen, A. (2016). Numerical Solutions of Regularized Long Wave Equation by Haar Wavelet Method. Mediterr. J. Math., 13, 3235–3253.
  • [39] Raslan, K.R. (2005). A computational method for the regularized long wave (RLW) equation. Applied Mathematics and Computation, 167, 1101–1118
  • [40] Kutluay, S., and Esen, A. (2006). A Finite Difference Solution of The Regularized Long–Wave Equation. Mathematical Problems in Engineering, 2006, 1–14.
  • [41] Islam, S. L., Haq, S., and Ali, A. (2009). A meshfree method for the numerical solution of the RLW equation. Journal of Computational and Applied Mathematics, 223, 997–1012.
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Klasik Fizik (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

İhsan Çelikkaya 0000-0002-8684-5922

Proje Numarası no
Gönderilme Tarihi 21 Şubat 2024
Kabul Tarihi 8 Ocak 2025
Erken Görünüm Tarihi 1 Temmuz 2025
Yayımlanma Tarihi 1 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 15 Sayı: 1

Kaynak Göster

APA Çelikkaya, İ. (2025). Some Numerical Techniques for Solution of Nonlinear Regularized Long Wave Equation. European Journal of Technique (EJT), 15(1), 21-28. https://doi.org/10.36222/ejt.1440941