Araştırma Makalesi
BibTex RIS Kaynak Göster

C-X ve Ku Bantları için Basit Yapılı Metasurface Tabanlı Dairesel ve Doğrusal Polarizasyon Dönüştürücünün Tasarımı ve Simülasyonu

Yıl 2026, Cilt: 15 Sayı: 2, 139 - 144, 29.01.2026

Öz

Bu çalışmada, farklı bant uygulamaları için tercih edilen basit yapılı bir polarizasyon dönüştürücünün tasarım ve simülasyon süreçleri gerçekleştirilmiştir. Önerilen polarizasyon dönüştürücü için FR-4 malzeme seçilmiş, metal yüzey bölümü ve metal sonlandırma için bakır malzeme tercih edilmiştir. Polarizasyon dönüştürücü için FR-4 malzeme seçilmiştir. Bu malzeme için kayıp tanjantı 0,025, dielektrik sabiti 4,3 ve kalınlığı 1,6 mm'dir. Çalışmanın simülasyonu, Computer Simulation Technique (CST) studio suite kullanılarak gerçekleştirilmiştir. Bu çalışma için seçilen frekans aralığı 4–16 GHz'dir. Simülasyon, frekans alanı çözücüsü dikkate alınarak gerçekleştirilmiştir.

Kaynakça

  • [1] Kaya, Y., Cheaper, wide-band, ultra-thin, and multi-purpose single-layer metasurface polarization converter design for C-, X-, and Ku-band applications, Symmetry, 15(2023), 2, 442, https://doi.org/10.3390/sym15020442 [2] Khan, M. I., Khalid, Z., & Tahir, F. A., Linear and circular-polarization conversion in X-band using anisotropic metasurface, Scientific reports, 9(2019),1, 4552, https://doi.org/10.1038/s41598-019-40793-2
  • [3] Ozturk, G., Ultra-thin, wide-angle and bandwidth-enhanced linear and circular metasurface-based reflection-type polarization converter at X-band microwave frequency, Journal of Electromagnetic Waves and Applications, 36(2022), 10, pp. 1423-1435, https://doi.org/10.1080/09205071.2022.2029722
  • [4] Han, J., Cao, X., Gao, J., Wei, J., Zhao, Y., Li, S., & Zhang, Z., Broadband radar cross section reduction using dual-circular polarization diffusion metasurface. IEEE antennas and wireless propagation letters, 17(2018), 6, pp. 969-973, DOI: 10.1109/LAWP.2018.2827124
  • [5] Wang, X., & Caloz, C., Phaser-based polarization-dispersive antenna and application to encrypted communication, In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (2017), pp. 2187-2188, DOI: 10.1109/APUSNCURSINRSM.2017.8073136
  • [6] Xue, C., Lou, Q., & Chen, Z. N., Broadband double-layered Huygens’ metasurface lens antenna for 5G millimeter-wave systems, IEEE Transactions on Antennas and Propagation, 68(2019), 3, pp. 1468-1476, DOI: 10.1109/TAP.2019.2943440
  • [7] Wang, J., Li, K., He, H., Cai, W., Liu, J., Yin, Z., ... & Liu, Y. J., Metasurface‐Enabled High‐Resolution Liquid‐Crystal Alignment for Display and Modulator Applications, Laser & Photonics Reviews, 16(2022), 1, 2100396, https://doi.org/10.1002/lpor.202100396
  • [8] Li, J., Yu, P., Zhang, S., & Liu, N., Electrically-controlled digital metasurface device for light projection displays, Nature communications, 11(2020), 1, 3574.
  • [9] Wang, X., & Yang, G. M., Time-coding spread-spectrum reconfigurable intelligent surface for secure wireless communication: theory and experiment, Optics Express, 29(2021), 20, 32031-32041, https://doi.org/10.1364/OE.437938
  • [10] Wang, X., & Caloz, C., Pseudorandom sequence (space–) time-modulated metasurfaces: Principles, operations, and applications, IEEE Antennas and Propagation Magazine, 64(2022), 4, pp. 135-144, DOI: 10.1109/MAP.2022.3169387
  • [11] Zhang, T., Wang, H., Peng, C., Chen, Z., Yang, G. M., & Wang, X., Multifunctional polarization converters based on linear-to-circular polarization decomposition reflective surfaces, IEEE Transactions on Antennas and Propagation, 72(2024), 11, pp. 8476 - 8487 DOI: 10.1109/TAP.2024.3463972
  • [12] Lin, H., Tam, K. W., Wong, S. W., & Ngai, K., Wideband 1-bit filtenna-to-filtenna cross-polarization converter using multimode resonance, IEEE Transactions on Antennas and Propagation, 72(2024), 4, pp. 3451-3460, DOI: 10.1109/TAP.2024.3371709
  • [13] Sofi, M. A., Saurav, K., & Koul, S. K., Four-port orthogonal circularly polarized dual-band MIMO antenna with polarization and spatial diversity using a dual-band linear-to-circular polarization converter, IEEE Transactions on Antennas and Propagation, 70(2022), 9, pp. 8554-8559, DOI: 10.1109/TAP.2022.3161493
  • [14] Cheng, Y., Fan, J., Luo, H., & Chen, F., Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial, Ieee Access, 8(2019), pp. 7615-7621, DOI: 10.1109/ACCESS.2019.2962299
  • [15] Wang, S. Y., Bi, J. D., Liu, W., Geyi, W., & Gao, S., Polarization-insensitive cross-polarization converter, IEEE Transactions on Antennas and Propagation, 69(2021), 8, pp. 4670-4680, DOI: 10.1109/TAP.2021.3060087
  • [16] Lin, B., Lv, L., Guo, J., Liu, Z., Ji, X., & Wu, J., An ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface, IEEE Access, 8(2020), 82732-82740, DOI: 10.1109/ACCESS.2020.2988058
  • [17] Kamal, B., Ullah, S., Ahmad, A., & Choi, D. Y., Dual-band cross-polarization and linear-to-circular polarization converting metasurface, Results in Physics, 73(2025), 108222, https://doi.org/10.1016/j.rinp.2025.108222
  • [18] Cao, J., & Rao, Z., Multi-mode polarization converter based on dirac semimetals and vanadium dioxide metamaterial, IEEE Photonics Technology Letters, 35(2023), 24, pp. 1311-1314, DOI: 10.1109/LPT.2023.3320627
  • [19] Liu, X., Gao, J., Xu, L., Cao, X., Zhao, Y., & Li, S., A coding diffuse metasurface for RCS reduction, IEEE Antennas and wireless propagation letters, (2016) 16, pp. 724-727, DOI: 10.1109/LAWP.2016.2601108
  • [20]Al-Nuaimi, M. K. T., Huang, G. L., Whittow, W. G., Chen, R. S., & Wong, S. W., Realization of single-layer Fourier phased metasurfaces for wideband RCS reduction, IEEE Antennas and Wireless Propagation Letters, 22(2023), 5, pp.1179-1183, DOI: 10.1109/LAWP.2023.3235970
  • [21] Jia, Y., Liu, Y., Guo, Y. J., Li, K., & Gong, S. X., Broadband polarization rotation reflective surfaces and their applications to RCS reduction, IEEE Transactions on Antennas and Propagation, 64(2015), 1, pp.179-188, DOI: 10.1109/TAP.2015.2502981
  • [22] Wang, X., Tong, M. S., & Yang, G. M., Multifocus multinull near-field transmitting focused metasurface, IEEE Transactions on Antennas and Propagation, 71(2023), 4, pp. 3172-3182, DOI: 10.1109/TAP.2023.3240538
  • [23]Lee, K., Son, J., Park, J., Kang, B., Jeon, W., Rotermund, F., & Min, B., Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces, Nature Photonics, 12(2018), 12, pp.765-773
  • [24] Yang, W., Chen, S., Xue, Q., Che, W., Shen, G., & Feng, W., Novel filtering method based on metasurface antenna and its application for wideband high-gain filtering antenna with low profile, IEEE Transactions on Antennas and Propagation, 67(2018), 3, pp. 1535-1544, DOI: 10.1109/TAP.2018.2889028
  • [25] Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., & Zhang, S., Metasurface holograms reaching 80% efficiency, Nature nanotechnology, 10(2015), 4, pp. 308-312
  • [26] Ye, W., Zeuner, F., Li, X., Reineke, B., He, S., Qiu, C. W., ... & Zentgraf, T., Spin and wavelength multiplexed nonlinear metasurface holography, Nature communications, 7(2016), 1, 11930
  • [27] Huang, L., Zhang, S., & Zentgraf, T., Metasurface holography: from fundamentals to applications, Nanophotonics, 7(2018), 6, pp. 1169-1190
  • [28] Huang, C., Pan, W., Ma, X., & Luo, X., Wideband radar cross-section reduction of a stacked patch array antenna using metasurface, IEEE Antennas and Wireless Propagation Letters, (2015), 14, pp. 1369-1372, DOI: 10.1109/LAWP.2015.2407375
  • [29] Liu, S., Yang, D., Chen, Y., Sun, K., Zhang, X., & Xiang, Y., Low-profile broadband metasurface antenna under multimode resonance, IEEE Antennas and Wireless Propagation Letters, 20(2021), 9, pp. 1696-1700, DOI: 10.1109/LAWP.2021.3094302
  • [30] Liu, X., Wang, X., Yang, G. M., Xiang, D., & Zheng, L. R., Dual-band frequency reconfigurable metasurface antenna for millimeter wave joint communication and radar sensing systems, Optics Express, 32(2024), 8, pp. 13851-13863, https://doi.org/10.1364/OE.522684
  • [31] Li, M., Guo, L., Dong, J., & Yang, H., An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves, Journal of Physics D: Applied Physics, 47(2014), 18, 185102, DOI 10.1088/0022-3727/47/18/185102
  • [32] Wen, Y., Ma, W., Bailey, J., Matmon, G., Yu, X., & Aeppli, G., Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies, Optics Letters, 39(2014), 6, pp. 1589-1592, https://doi.org/10.1364/OL.39.001589
  • [33] Deng, T., Liang, J., Cai, T., Wang, C., Wang, X., Lou, J., ... & Wang, D., Ultra-thin and broadband surface wave meta-absorber, Optics Express, 29 (2021), 12, pp.19193-19201, https://doi.org/10.1364/OE.427992
  • [34] Wang, X., Tong, M. S., & Zhao, L., Pseudorandom noise sequence time-modulated reflective metasurfaces for target recognition, IEEE Transactions on Microwave Theory and Techniques, 71(2023), 8, pp. 3446-3454, DOI: 10.1109/TMTT.2023.3276050
  • [35] Caloz, C., Alu, A., Tretyakov, S., Sounas, D., Achouri, K., & Deck-Léger, Z. L., Electromagnetic nonreciprocity, Physical Review Applied, 10(2018), 4, 047001, DOI: https://doi.org/10.1103/PhysRevApplied.10.047001
  • [36] Bo, X. Z., Chen, H., Yu, B. Y., Geng, M. Y., Liu, Z. G., & Lu, W. B., A flexible and transparent broadband metasurface polarization converter, IEEE Antennas and Wireless Propagation Letters, 23(2024), 4, pp. 1311-1315, DOI: 10.1109/LAWP.2024.3354787
  • [37] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., ... & Nguyen, T. Q. H., Simple design of efficient broadband multifunctional polarization converter for X-band applications, Scientific reports, 11(2021), 1, 2032,
  • [38] Zhang, H., Zhang, L., Song, P., Li, Y., Gao, C., Xin, P., & Liu, T., A butterfly metasurface with efficient multi-functional polarization conversion operating in the Ku-Ka band, Scientific Reports, 14(2024), 1, 30161
  • [39] Nguyen, T. Q. H., Nguyen, T. K. T., Nguyen, T. Q. M., Cao, T. N., Phan, H. L., Luong, N. M., ... & Vu, D. L. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486, 126773.
  • [40] Yang, X., Ding, Z., & Zhang, Z., Broadband linear polarization conversion across complete Ku band based on ultrathin metasurface, AEU-International Journal of Electronics and Communications, 138(2021), 153884, https://doi.org/10.1016/j.aeue.2021.153884
  • [41] Fang, C., Cheng, Y., He, Z., Zhao, J., & Gong, R., Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface, Optik, 137(2017), pp. 148-155, https://doi.org/10.1016/j.ijleo.2017.03.002
  • [42] Lin, B.Q., Da, X.Y., Wu, J.L., Li, W., Fang, Y.W., and Zhu, Z.H., Ultra-wideband and high-efficiency cross polarization converter based on anisotropic metasurface, Microwave and Optical Technology Letters, 58(2016), 10, pp. 2402-2405, https://doi.org/10.1002/mop.30056

A metasurface-based polarization converter designed for different band applications, with circular and linear polarization properties

Yıl 2026, Cilt: 15 Sayı: 2, 139 - 144, 29.01.2026

Öz

In this study, design and simulation processes of a simple structure polarization converter preferred for different band applications were carried out. FR-4 material was selected for the middle part and copper material was preferred for the top and bottom (ground). FR-4 material has been selected for the polarization converter (PC). For this material, loss tangent is 0.025, dielectric constant is 4.3 and thickness is 1.6 mm. The simulation of the study was performed using a Computer Simulation Technique (CST) studio suite. Frequency range selected for this study is 4–16 GHz. The simulation was carried out taking into account the frequency-domain solver. Tetrahedral was selected as the mesh type. The aim of the proposed study is to implement a design with different polarization properties. Polarization conversion ratio (PCR) value for PC was found to be greater than 0.9, and it exhibited magnetic properties at all three frequencies where the PCR value was greater than 0.9. PCR value reached 0.99 in the X-band range. PC, which exhibits circular polarization in the C-band frequency range, was observed to have a 90 degree phase shift. Matlab program was preferred in evaluating the CST simulation results and interpreting the reflection coefficient, PCR, ellipticity (e) value, axial ratio (AR) and phase values.

Kaynakça

  • [1] Kaya, Y., Cheaper, wide-band, ultra-thin, and multi-purpose single-layer metasurface polarization converter design for C-, X-, and Ku-band applications, Symmetry, 15(2023), 2, 442, https://doi.org/10.3390/sym15020442 [2] Khan, M. I., Khalid, Z., & Tahir, F. A., Linear and circular-polarization conversion in X-band using anisotropic metasurface, Scientific reports, 9(2019),1, 4552, https://doi.org/10.1038/s41598-019-40793-2
  • [3] Ozturk, G., Ultra-thin, wide-angle and bandwidth-enhanced linear and circular metasurface-based reflection-type polarization converter at X-band microwave frequency, Journal of Electromagnetic Waves and Applications, 36(2022), 10, pp. 1423-1435, https://doi.org/10.1080/09205071.2022.2029722
  • [4] Han, J., Cao, X., Gao, J., Wei, J., Zhao, Y., Li, S., & Zhang, Z., Broadband radar cross section reduction using dual-circular polarization diffusion metasurface. IEEE antennas and wireless propagation letters, 17(2018), 6, pp. 969-973, DOI: 10.1109/LAWP.2018.2827124
  • [5] Wang, X., & Caloz, C., Phaser-based polarization-dispersive antenna and application to encrypted communication, In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, (2017), pp. 2187-2188, DOI: 10.1109/APUSNCURSINRSM.2017.8073136
  • [6] Xue, C., Lou, Q., & Chen, Z. N., Broadband double-layered Huygens’ metasurface lens antenna for 5G millimeter-wave systems, IEEE Transactions on Antennas and Propagation, 68(2019), 3, pp. 1468-1476, DOI: 10.1109/TAP.2019.2943440
  • [7] Wang, J., Li, K., He, H., Cai, W., Liu, J., Yin, Z., ... & Liu, Y. J., Metasurface‐Enabled High‐Resolution Liquid‐Crystal Alignment for Display and Modulator Applications, Laser & Photonics Reviews, 16(2022), 1, 2100396, https://doi.org/10.1002/lpor.202100396
  • [8] Li, J., Yu, P., Zhang, S., & Liu, N., Electrically-controlled digital metasurface device for light projection displays, Nature communications, 11(2020), 1, 3574.
  • [9] Wang, X., & Yang, G. M., Time-coding spread-spectrum reconfigurable intelligent surface for secure wireless communication: theory and experiment, Optics Express, 29(2021), 20, 32031-32041, https://doi.org/10.1364/OE.437938
  • [10] Wang, X., & Caloz, C., Pseudorandom sequence (space–) time-modulated metasurfaces: Principles, operations, and applications, IEEE Antennas and Propagation Magazine, 64(2022), 4, pp. 135-144, DOI: 10.1109/MAP.2022.3169387
  • [11] Zhang, T., Wang, H., Peng, C., Chen, Z., Yang, G. M., & Wang, X., Multifunctional polarization converters based on linear-to-circular polarization decomposition reflective surfaces, IEEE Transactions on Antennas and Propagation, 72(2024), 11, pp. 8476 - 8487 DOI: 10.1109/TAP.2024.3463972
  • [12] Lin, H., Tam, K. W., Wong, S. W., & Ngai, K., Wideband 1-bit filtenna-to-filtenna cross-polarization converter using multimode resonance, IEEE Transactions on Antennas and Propagation, 72(2024), 4, pp. 3451-3460, DOI: 10.1109/TAP.2024.3371709
  • [13] Sofi, M. A., Saurav, K., & Koul, S. K., Four-port orthogonal circularly polarized dual-band MIMO antenna with polarization and spatial diversity using a dual-band linear-to-circular polarization converter, IEEE Transactions on Antennas and Propagation, 70(2022), 9, pp. 8554-8559, DOI: 10.1109/TAP.2022.3161493
  • [14] Cheng, Y., Fan, J., Luo, H., & Chen, F., Dual-band and high-efficiency circular polarization convertor based on anisotropic metamaterial, Ieee Access, 8(2019), pp. 7615-7621, DOI: 10.1109/ACCESS.2019.2962299
  • [15] Wang, S. Y., Bi, J. D., Liu, W., Geyi, W., & Gao, S., Polarization-insensitive cross-polarization converter, IEEE Transactions on Antennas and Propagation, 69(2021), 8, pp. 4670-4680, DOI: 10.1109/TAP.2021.3060087
  • [16] Lin, B., Lv, L., Guo, J., Liu, Z., Ji, X., & Wu, J., An ultra-wideband reflective linear-to-circular polarization converter based on anisotropic metasurface, IEEE Access, 8(2020), 82732-82740, DOI: 10.1109/ACCESS.2020.2988058
  • [17] Kamal, B., Ullah, S., Ahmad, A., & Choi, D. Y., Dual-band cross-polarization and linear-to-circular polarization converting metasurface, Results in Physics, 73(2025), 108222, https://doi.org/10.1016/j.rinp.2025.108222
  • [18] Cao, J., & Rao, Z., Multi-mode polarization converter based on dirac semimetals and vanadium dioxide metamaterial, IEEE Photonics Technology Letters, 35(2023), 24, pp. 1311-1314, DOI: 10.1109/LPT.2023.3320627
  • [19] Liu, X., Gao, J., Xu, L., Cao, X., Zhao, Y., & Li, S., A coding diffuse metasurface for RCS reduction, IEEE Antennas and wireless propagation letters, (2016) 16, pp. 724-727, DOI: 10.1109/LAWP.2016.2601108
  • [20]Al-Nuaimi, M. K. T., Huang, G. L., Whittow, W. G., Chen, R. S., & Wong, S. W., Realization of single-layer Fourier phased metasurfaces for wideband RCS reduction, IEEE Antennas and Wireless Propagation Letters, 22(2023), 5, pp.1179-1183, DOI: 10.1109/LAWP.2023.3235970
  • [21] Jia, Y., Liu, Y., Guo, Y. J., Li, K., & Gong, S. X., Broadband polarization rotation reflective surfaces and their applications to RCS reduction, IEEE Transactions on Antennas and Propagation, 64(2015), 1, pp.179-188, DOI: 10.1109/TAP.2015.2502981
  • [22] Wang, X., Tong, M. S., & Yang, G. M., Multifocus multinull near-field transmitting focused metasurface, IEEE Transactions on Antennas and Propagation, 71(2023), 4, pp. 3172-3182, DOI: 10.1109/TAP.2023.3240538
  • [23]Lee, K., Son, J., Park, J., Kang, B., Jeon, W., Rotermund, F., & Min, B., Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces, Nature Photonics, 12(2018), 12, pp.765-773
  • [24] Yang, W., Chen, S., Xue, Q., Che, W., Shen, G., & Feng, W., Novel filtering method based on metasurface antenna and its application for wideband high-gain filtering antenna with low profile, IEEE Transactions on Antennas and Propagation, 67(2018), 3, pp. 1535-1544, DOI: 10.1109/TAP.2018.2889028
  • [25] Zheng, G., Mühlenbernd, H., Kenney, M., Li, G., Zentgraf, T., & Zhang, S., Metasurface holograms reaching 80% efficiency, Nature nanotechnology, 10(2015), 4, pp. 308-312
  • [26] Ye, W., Zeuner, F., Li, X., Reineke, B., He, S., Qiu, C. W., ... & Zentgraf, T., Spin and wavelength multiplexed nonlinear metasurface holography, Nature communications, 7(2016), 1, 11930
  • [27] Huang, L., Zhang, S., & Zentgraf, T., Metasurface holography: from fundamentals to applications, Nanophotonics, 7(2018), 6, pp. 1169-1190
  • [28] Huang, C., Pan, W., Ma, X., & Luo, X., Wideband radar cross-section reduction of a stacked patch array antenna using metasurface, IEEE Antennas and Wireless Propagation Letters, (2015), 14, pp. 1369-1372, DOI: 10.1109/LAWP.2015.2407375
  • [29] Liu, S., Yang, D., Chen, Y., Sun, K., Zhang, X., & Xiang, Y., Low-profile broadband metasurface antenna under multimode resonance, IEEE Antennas and Wireless Propagation Letters, 20(2021), 9, pp. 1696-1700, DOI: 10.1109/LAWP.2021.3094302
  • [30] Liu, X., Wang, X., Yang, G. M., Xiang, D., & Zheng, L. R., Dual-band frequency reconfigurable metasurface antenna for millimeter wave joint communication and radar sensing systems, Optics Express, 32(2024), 8, pp. 13851-13863, https://doi.org/10.1364/OE.522684
  • [31] Li, M., Guo, L., Dong, J., & Yang, H., An ultra-thin chiral metamaterial absorber with high selectivity for LCP and RCP waves, Journal of Physics D: Applied Physics, 47(2014), 18, 185102, DOI 10.1088/0022-3727/47/18/185102
  • [32] Wen, Y., Ma, W., Bailey, J., Matmon, G., Yu, X., & Aeppli, G., Planar broadband and high absorption metamaterial using single nested resonator at terahertz frequencies, Optics Letters, 39(2014), 6, pp. 1589-1592, https://doi.org/10.1364/OL.39.001589
  • [33] Deng, T., Liang, J., Cai, T., Wang, C., Wang, X., Lou, J., ... & Wang, D., Ultra-thin and broadband surface wave meta-absorber, Optics Express, 29 (2021), 12, pp.19193-19201, https://doi.org/10.1364/OE.427992
  • [34] Wang, X., Tong, M. S., & Zhao, L., Pseudorandom noise sequence time-modulated reflective metasurfaces for target recognition, IEEE Transactions on Microwave Theory and Techniques, 71(2023), 8, pp. 3446-3454, DOI: 10.1109/TMTT.2023.3276050
  • [35] Caloz, C., Alu, A., Tretyakov, S., Sounas, D., Achouri, K., & Deck-Léger, Z. L., Electromagnetic nonreciprocity, Physical Review Applied, 10(2018), 4, 047001, DOI: https://doi.org/10.1103/PhysRevApplied.10.047001
  • [36] Bo, X. Z., Chen, H., Yu, B. Y., Geng, M. Y., Liu, Z. G., & Lu, W. B., A flexible and transparent broadband metasurface polarization converter, IEEE Antennas and Wireless Propagation Letters, 23(2024), 4, pp. 1311-1315, DOI: 10.1109/LAWP.2024.3354787
  • [37] Nguyen, T. K. T., Nguyen, T. M., Nguyen, H. Q., Cao, T. N., Le, D. T., Bui, X. K., ... & Nguyen, T. Q. H., Simple design of efficient broadband multifunctional polarization converter for X-band applications, Scientific reports, 11(2021), 1, 2032,
  • [38] Zhang, H., Zhang, L., Song, P., Li, Y., Gao, C., Xin, P., & Liu, T., A butterfly metasurface with efficient multi-functional polarization conversion operating in the Ku-Ka band, Scientific Reports, 14(2024), 1, 30161
  • [39] Nguyen, T. Q. H., Nguyen, T. K. T., Nguyen, T. Q. M., Cao, T. N., Phan, H. L., Luong, N. M., ... & Vu, D. L. (2021). Simple design of a wideband and wide-angle reflective linear polarization converter based on crescent-shaped metamaterial for Ku-band applications. Optics Communications, 486, 126773.
  • [40] Yang, X., Ding, Z., & Zhang, Z., Broadband linear polarization conversion across complete Ku band based on ultrathin metasurface, AEU-International Journal of Electronics and Communications, 138(2021), 153884, https://doi.org/10.1016/j.aeue.2021.153884
  • [41] Fang, C., Cheng, Y., He, Z., Zhao, J., & Gong, R., Design of a wideband reflective linear polarization converter based on the ladder-shaped structure metasurface, Optik, 137(2017), pp. 148-155, https://doi.org/10.1016/j.ijleo.2017.03.002
  • [42] Lin, B.Q., Da, X.Y., Wu, J.L., Li, W., Fang, Y.W., and Zhu, Z.H., Ultra-wideband and high-efficiency cross polarization converter based on anisotropic metasurface, Microwave and Optical Technology Letters, 58(2016), 10, pp. 2402-2405, https://doi.org/10.1002/mop.30056
Toplam 41 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Hamdullah Öztürk 0000-0001-8475-5731

Gönderilme Tarihi 3 Ekim 2025
Kabul Tarihi 25 Kasım 2025
Yayımlanma Tarihi 29 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 15 Sayı: 2

Kaynak Göster

APA Öztürk, H. (2026). A metasurface-based polarization converter designed for different band applications, with circular and linear polarization properties. European Journal of Technique (EJT), 15(2), 139-144. https://doi.org/10.36222/ejt.1796186