Araştırma Makalesi
BibTex RIS Kaynak Göster

Techno-Economic and Environmental Analysis of a Biomass Based Hybrid Renewable Energy System for an Off-Grid Livestock Facility

Yıl 2026, Cilt: 15 Sayı: 2, 273 - 282, 29.01.2026

Öz

In this study, a biomass-based hybrid renewable energy system (HRES) combining photovoltaic (PV) panels, a biogas generator, and battery storage was designed and optimized to meet the electricity demand of an off-grid livestock facility located in northern Diyarbakır, Turkey. The analysis was performed using HOMER Pro software, incorporating technical, economic, and environmental evaluations. The system was configured with 43.9 kW PV, a 50 kW biogas generator, battery storage, and a converter, supplying a daily load of 165 kWh entirely from renewable sources. Annual energy production reached 90,866 kWh, achieving a 100% renewable fraction. The system’s Net Present Cost (NPC) and Levelized Cost of Energy (LCOE) were determined as $289,055 and 0.2326 $/kWh, respectively, confirming its strong economic competitiveness. Sensitivity analyses revealed that solar radiation was the most influential factor affecting system economics, where increased irradiance improved cost efficiency by approximately 7–8%. Variations in biomass price produced moderate effects of around 3%, while energy demand and nominal discount rate had secondary yet measurable impacts. The environmental assessment indicated a 99.97% reduction in CO₂ emissions, with the hybrid configuration achieving near-zero greenhouse gas output and only negligible levels of SO₂, NOₓ, and CO. Furthermore, the grid extension analysis demonstrated that beyond a 14.6 km distance, the off-grid HRES becomes more cost-effective than extending the utility grid. Overall, the results confirm that integrating solar and biogas energy provides a technically reliable, economically viable, and environmentally sustainable solution for rural electrification in regions with high solar potential and strong agricultural livestock activity.

Etik Beyan

This article does not contain any studies with human participants or animals performed by any of the authors

Kaynakça

  • D. C. Balan, S. M. Balan, and J. Szakacs, ‘Technical-Economic Analysis of a Hybrid Energy Systems Composed of PV and Biomass Obtained from Municipal Solid Waste Connected to the Grid’, in Proceedings, MDPI, 2020, p. 9.
  • K. C. Sanjay, M. Karthikeyan, K. M. Prasannakumaran, and V. Kirubakaran, ‘Techno Commercial Study of Hybrid Systems for the Agriculture Farm Using Homer Software’, in Hybrid Renewable Energy Systems, 1st ed., U. Sahoo, Ed., Wiley, 2021, pp. 115–133.
  • A. G. Álvaro, C. R. Palomar, R. M. Torre, D. H. Redondo, and I. de Godos Crespo, ‘Hybridization of anaerobic digestion with solar energy: A solution for isolated livestock farms’, Energy Conversion and Management: X, vol. 20, p. 100488, 2023.
  • A. S. Irshad et al., ‘Novel integration and optimization of reliable photovoltaic and biomass integrated system for rural electrification’, Energy Reports, vol. 11, pp. 4924–4939, 2024. H. Bouregba et al., ‘Feasibility study of a grid-connected PV/wind hybrid energy system for an urban dairy farm’, Heliyon, vol. 10, no. 23, 2024.
  • R. J. J. Molu et al., ‘A techno-economic perspective on efficient hybrid renewable energy solutions in Douala, Cameroon’s grid-connected systems’, Scientific Reports, vol. 14, no. 1, p. 13590, 2024.
  • R. Yasmin, M. N. Nabi, F. Rashid, and M. A. Hossain, ‘Solar, Wind, Hydrogen, and Bioenergy-Based Hybrid System for Off-Grid Remote Locations: Techno-Economic and Environmental Analysis’, Clean Technologies, vol. 7, no. 2, p. 36, 2025.
  • A. H. Nebey, ‘Design of optimal hybrid power system to provide reliable supply to rural areas of Ethiopia using MATLAB and Homer’, Renewables, vol. 8, no. 1, p. 4, Dec. 2021.
  • R. Rajbongshi, D. Borgohain, and S. Mahapatra, ‘Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER’, Energy, vol. 126, pp. 461–474, 2017, doi: https://doi.org/10.1016/j.energy.2017.03.056.
  • E. Akyüz, M. Bayraktar, and Z. Oktay, ‘A feasibility study on hybrid renewable energy systems for the industrial broiler sector : An application’, Journal of Balıkesir University Institute of Science and Technology, vol. 11, no. 2, pp. 44–54, 2009.
  • J. Li, P. Liu, and Z. Li, ‘Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China’, Energy, vol. 208, p. 118387, 2020.
  • N. Yimen et al., ‘Optimal design and sensitivity analysis of distributed biomass‐based hybrid renewable energy systems for rural electrification: Case study of different photovoltaic/wind/battery‐integrated options in Babadam, northern Cameroon’, IET Renewable Power Gen, vol. 16, no. 14, pp. 2939–2956, 2022, doi: https://doi.org/10.1049/rpg2.12266.
  • O. Krishan and S. Suhag, ‘Techno-economic analysis of a hybrid renewable energy system for an energy poor rural community’, Journal of Energy Storage, vol. 23, pp. 305–319, 2019.
  • ‘NASA POWER | Data Access Viewer (DAV)’. Accessed: Oct. 08, 2025. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/
  • A. Bhatt, M. P. Sharma, and R. P. Saini, ‘Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India’, Renewable and Sustainable Energy Reviews, vol. 61, pp. 53–69, 2016, doi: https://doi.org/10.1016/j.rser.2016.03.030.
  • ‘HOMER PV’, How HOMER Calculates the PV Array Power Output. Accessed: Apr. 25, 2025. [Online]. Available: https://support.ul-renewables.com/homer-manual-pro/how_homer_calculates_the_pv_array_power_output.html
  • A. Deihimi and M. E. S. Mahmoodieh, ‘Analysis and control of battery‐integrated dc/dc converters for renewable energy applications’, IET Power Electronics, vol. 10, no. 14, pp. 1819–1831, Nov. 2017, doi: https://doi.org/10.1049/iet-pel.2016.0832.
  • A. Gaurav, A. Tyagi, S. K. Jha, and B. Kumar, ‘Optimal sizing and economic assessment of grid connected active distribution network for reliable rural electrification in India’, Energy Conversion and Management, vol. 311, p. 118505, 2024, doi: https://doi.org/10.1016/j.enconman.2024.118505.
  • R. T. Akarsu and N. Demir, ‘Techno-economic and environmental analysis of biogas-based hybrid renewable energy systems: A case study for a small-scale livestock farm’, Process Safety and Environmental Protection, vol. 191, pp. 1968–1981, 2024, doi: https://doi.org/10.1016/j.psep.2024.09.062.
  • W. Tian, ‘A review of sensitivity analysis methods in building energy analysis’, Renewable and sustainable energy reviews, vol. 20, pp. 411–419, 2013, doi: https://doi.org/10.1016/j.rser.2012.12.014.
  • M. Bagheri, N. Shirzadi, E. Bazdar, and C. A. Kennedy, ‘Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver’, Renewable and sustainable energy reviews, vol. 95, pp. 254–264, 2018, doi: https://doi.org/10.1016/j.rser.2018.07.037.
  • X. Fu, C. Guo, and K. Yang, ‘Market‐clearing framework of a resilient microgrid with renewable energy considering emission reduction targets’, IET Renewable Power Gen, vol. 18, no. 7, pp. 1304–1317, May 2024, doi: https://doi.org/10.1049/rpg2.12786.
  • M. Nasser and H. Hassan, ‘Green hydrogen production mapping via large scale water electrolysis using hybrid solar, wind, and biomass energies systems: 4E evaluation’, Fuel, vol. 371, p. 131929, 2024, doi: https://doi.org/10.1016/j.fuel.2024.131929.
  • T. Anjum, M. A. Parvez Mahmud, L. Kumar, M. El Haj Assad, and M. A. Ehyaei, ‘Feasibility analysis of hybrid photovoltaic, wind, and fuel cell systems for on–off‐grid applications: A case study of housing project in Bangladesh’, Energy Science & Engineering, vol. 12, no. 8, pp. 3476–3504, Aug. 2024, doi: https://doi.org/10.1002/ese3.1830.
  • E. I. Zoulias and N. Lymberopoulos, ‘Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems’, Renewable energy, vol. 32, no. 4, pp. 680–696, 2007, doi: https://doi.org/10.1016/j.renene.2006.02.005.
  • ‘TCMB CP’, Consumer Prices. Accessed: Apr. 28, 2025. [Online]. Available: https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Statistics/Inflation+Data
  • ‘TCMB IR’, Inflation Report. Accessed: Apr. 28, 2025. [Online]. Available: https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Publications/Reports/Inflation+Report/
  • P. Sharma et al., ‘Techno-economic analysis of a hybrid energy system for electrification using an off-grid solar/biogas/battery system employing HOMER: A case study in Vietnam’, Process Safety and Environmental Protection, vol. 191, pp. 1353–1367, 2024.
  • M. A. Köprü, D. Öztürk, and B. Yıldırım, ‘Microgrid design and comparative analysis for regions with different wind speed and solar radiation rate’, Dicle University Journal of Engineering, vol. 15, no. 3, pp. 607–613, 2024.
  • S. Vendoti, M. Muralidhar, and R. Kiranmayi, ‘Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software’, Environment, Development and Sustainability, vol. 23, no. 1, pp. 351–372, 2021, doi: https://doi.org/10.1007/s10668-019-00583-2.
  • C. Li, L. Zhang, F. Qiu, and R. Fu, ‘Optimization and enviro-economic assessment of hybrid sustainable energy systems: The case study of a photovoltaic/biogas/diesel/battery system in Xuzhou, China’, Energy Strategy Reviews, vol. 41, p. 100852, 2022.

Şebekeden Bağımsız Bir Hayvancılık Tesisi İçin Biyokütle Tabanlı Hibrit Yenilenebilir Enerji Sisteminin Teknik, Ekonomik ve Çevresel Analizi

Yıl 2026, Cilt: 15 Sayı: 2, 273 - 282, 29.01.2026

Öz

Bu çalışmada, Diyarbakır’ın kuzeyinde (Türkiye) yer alan şebekeden bağımsız bir hayvancılık tesisinin elektrik talebini karşılamak amacıyla fotovoltaik (PV) paneller, biyogaz jeneratörü ve batarya depolamasını birleştiren biyokütle tabanlı hibrit bir yenilenebilir enerji sistemi (HRES) tasarlanmış ve optimize edilmiştir. Analizler, teknik, ekonomik ve çevresel değerlendirmeleri içerecek şekilde HOMER Pro yazılımı kullanılarak gerçekleştirilmiştir. Sistem; 43,9 kW PV, 50 kW biyogaz jeneratörü, batarya depolama ve bir dönüştürücüden oluşacak şekilde yapılandırılmış olup, günlük 165 kWh’lik yükü tamamen yenilenebilir kaynaklardan karşılamaktadır. Yıllık enerji üretimi 90.866 kWh’ye ulaşmış ve %100 yenilenebilirlik oranı elde edilmiştir. Sistemin Net Bugünkü Maliyeti (NPC) ve Seviyelendirilmiş Enerji Maliyeti (LCOE) sırasıyla 289.055 USD ve 0,2326 USD/kWh olarak belirlenmiş olup, güçlü bir ekonomik rekabetçiliğe sahip olduğunu doğrulamaktadır. Duyarlılık analizleri, sistem ekonomisini etkileyen en önemli faktörün güneş ışınımı olduğunu göstermiş; artan ışınımın maliyet etkinliğini yaklaşık %7–8 oranında iyileştirdiği belirlenmiştir. Biyokütle fiyatındaki değişimler yaklaşık %3 düzeyinde orta derecede etkilere yol açarken, enerji talebi ve nominal iskonto oranı ikincil ancak ölçülebilir etkilere sahip olmuştur. Çevresel değerlendirme, CO₂ emisyonlarında %99,97 oranında bir azalma olduğunu ortaya koymuş; hibrit yapılandırma, neredeyse sıfır sera gazı salımı ile yalnızca ihmal edilebilir düzeylerde SO₂, NOₓ ve CO emisyonları üretmiştir. Ayrıca, şebeke uzatma analizi, 14,6 km’yi aşan mesafelerde şebekeden bağımsız HRES’in, kamu elektrik şebekesinin uzatılmasına kıyasla daha maliyet etkin hale geldiğini göstermiştir. Genel olarak, elde edilen sonuçlar, güneş ve biyogaz enerjisinin entegrasyonunun, yüksek güneş potansiyeline ve güçlü tarımsal hayvancılık faaliyetlerine sahip bölgelerde kırsal elektrifikasyon için teknik olarak güvenilir, ekonomik olarak uygulanabilir ve çevresel açıdan sürdürülebilir bir çözüm sunduğunu doğrulamaktadır.

Etik Beyan

Bu makale, yazarlardan herhangi biri tarafından insan katılımcılar veya hayvanlar üzerinde gerçekleştirilen herhangi bir çalışma içermemektedir.

Kaynakça

  • D. C. Balan, S. M. Balan, and J. Szakacs, ‘Technical-Economic Analysis of a Hybrid Energy Systems Composed of PV and Biomass Obtained from Municipal Solid Waste Connected to the Grid’, in Proceedings, MDPI, 2020, p. 9.
  • K. C. Sanjay, M. Karthikeyan, K. M. Prasannakumaran, and V. Kirubakaran, ‘Techno Commercial Study of Hybrid Systems for the Agriculture Farm Using Homer Software’, in Hybrid Renewable Energy Systems, 1st ed., U. Sahoo, Ed., Wiley, 2021, pp. 115–133.
  • A. G. Álvaro, C. R. Palomar, R. M. Torre, D. H. Redondo, and I. de Godos Crespo, ‘Hybridization of anaerobic digestion with solar energy: A solution for isolated livestock farms’, Energy Conversion and Management: X, vol. 20, p. 100488, 2023.
  • A. S. Irshad et al., ‘Novel integration and optimization of reliable photovoltaic and biomass integrated system for rural electrification’, Energy Reports, vol. 11, pp. 4924–4939, 2024. H. Bouregba et al., ‘Feasibility study of a grid-connected PV/wind hybrid energy system for an urban dairy farm’, Heliyon, vol. 10, no. 23, 2024.
  • R. J. J. Molu et al., ‘A techno-economic perspective on efficient hybrid renewable energy solutions in Douala, Cameroon’s grid-connected systems’, Scientific Reports, vol. 14, no. 1, p. 13590, 2024.
  • R. Yasmin, M. N. Nabi, F. Rashid, and M. A. Hossain, ‘Solar, Wind, Hydrogen, and Bioenergy-Based Hybrid System for Off-Grid Remote Locations: Techno-Economic and Environmental Analysis’, Clean Technologies, vol. 7, no. 2, p. 36, 2025.
  • A. H. Nebey, ‘Design of optimal hybrid power system to provide reliable supply to rural areas of Ethiopia using MATLAB and Homer’, Renewables, vol. 8, no. 1, p. 4, Dec. 2021.
  • R. Rajbongshi, D. Borgohain, and S. Mahapatra, ‘Optimization of PV-biomass-diesel and grid base hybrid energy systems for rural electrification by using HOMER’, Energy, vol. 126, pp. 461–474, 2017, doi: https://doi.org/10.1016/j.energy.2017.03.056.
  • E. Akyüz, M. Bayraktar, and Z. Oktay, ‘A feasibility study on hybrid renewable energy systems for the industrial broiler sector : An application’, Journal of Balıkesir University Institute of Science and Technology, vol. 11, no. 2, pp. 44–54, 2009.
  • J. Li, P. Liu, and Z. Li, ‘Optimal design and techno-economic analysis of a solar-wind-biomass off-grid hybrid power system for remote rural electrification: A case study of west China’, Energy, vol. 208, p. 118387, 2020.
  • N. Yimen et al., ‘Optimal design and sensitivity analysis of distributed biomass‐based hybrid renewable energy systems for rural electrification: Case study of different photovoltaic/wind/battery‐integrated options in Babadam, northern Cameroon’, IET Renewable Power Gen, vol. 16, no. 14, pp. 2939–2956, 2022, doi: https://doi.org/10.1049/rpg2.12266.
  • O. Krishan and S. Suhag, ‘Techno-economic analysis of a hybrid renewable energy system for an energy poor rural community’, Journal of Energy Storage, vol. 23, pp. 305–319, 2019.
  • ‘NASA POWER | Data Access Viewer (DAV)’. Accessed: Oct. 08, 2025. [Online]. Available: https://power.larc.nasa.gov/data-access-viewer/
  • A. Bhatt, M. P. Sharma, and R. P. Saini, ‘Feasibility and sensitivity analysis of an off-grid micro hydro–photovoltaic–biomass and biogas–diesel–battery hybrid energy system for a remote area in Uttarakhand state, India’, Renewable and Sustainable Energy Reviews, vol. 61, pp. 53–69, 2016, doi: https://doi.org/10.1016/j.rser.2016.03.030.
  • ‘HOMER PV’, How HOMER Calculates the PV Array Power Output. Accessed: Apr. 25, 2025. [Online]. Available: https://support.ul-renewables.com/homer-manual-pro/how_homer_calculates_the_pv_array_power_output.html
  • A. Deihimi and M. E. S. Mahmoodieh, ‘Analysis and control of battery‐integrated dc/dc converters for renewable energy applications’, IET Power Electronics, vol. 10, no. 14, pp. 1819–1831, Nov. 2017, doi: https://doi.org/10.1049/iet-pel.2016.0832.
  • A. Gaurav, A. Tyagi, S. K. Jha, and B. Kumar, ‘Optimal sizing and economic assessment of grid connected active distribution network for reliable rural electrification in India’, Energy Conversion and Management, vol. 311, p. 118505, 2024, doi: https://doi.org/10.1016/j.enconman.2024.118505.
  • R. T. Akarsu and N. Demir, ‘Techno-economic and environmental analysis of biogas-based hybrid renewable energy systems: A case study for a small-scale livestock farm’, Process Safety and Environmental Protection, vol. 191, pp. 1968–1981, 2024, doi: https://doi.org/10.1016/j.psep.2024.09.062.
  • W. Tian, ‘A review of sensitivity analysis methods in building energy analysis’, Renewable and sustainable energy reviews, vol. 20, pp. 411–419, 2013, doi: https://doi.org/10.1016/j.rser.2012.12.014.
  • M. Bagheri, N. Shirzadi, E. Bazdar, and C. A. Kennedy, ‘Optimal planning of hybrid renewable energy infrastructure for urban sustainability: Green Vancouver’, Renewable and sustainable energy reviews, vol. 95, pp. 254–264, 2018, doi: https://doi.org/10.1016/j.rser.2018.07.037.
  • X. Fu, C. Guo, and K. Yang, ‘Market‐clearing framework of a resilient microgrid with renewable energy considering emission reduction targets’, IET Renewable Power Gen, vol. 18, no. 7, pp. 1304–1317, May 2024, doi: https://doi.org/10.1049/rpg2.12786.
  • M. Nasser and H. Hassan, ‘Green hydrogen production mapping via large scale water electrolysis using hybrid solar, wind, and biomass energies systems: 4E evaluation’, Fuel, vol. 371, p. 131929, 2024, doi: https://doi.org/10.1016/j.fuel.2024.131929.
  • T. Anjum, M. A. Parvez Mahmud, L. Kumar, M. El Haj Assad, and M. A. Ehyaei, ‘Feasibility analysis of hybrid photovoltaic, wind, and fuel cell systems for on–off‐grid applications: A case study of housing project in Bangladesh’, Energy Science & Engineering, vol. 12, no. 8, pp. 3476–3504, Aug. 2024, doi: https://doi.org/10.1002/ese3.1830.
  • E. I. Zoulias and N. Lymberopoulos, ‘Techno-economic analysis of the integration of hydrogen energy technologies in renewable energy-based stand-alone power systems’, Renewable energy, vol. 32, no. 4, pp. 680–696, 2007, doi: https://doi.org/10.1016/j.renene.2006.02.005.
  • ‘TCMB CP’, Consumer Prices. Accessed: Apr. 28, 2025. [Online]. Available: https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Statistics/Inflation+Data
  • ‘TCMB IR’, Inflation Report. Accessed: Apr. 28, 2025. [Online]. Available: https://www.tcmb.gov.tr/wps/wcm/connect/EN/TCMB+EN/Main+Menu/Publications/Reports/Inflation+Report/
  • P. Sharma et al., ‘Techno-economic analysis of a hybrid energy system for electrification using an off-grid solar/biogas/battery system employing HOMER: A case study in Vietnam’, Process Safety and Environmental Protection, vol. 191, pp. 1353–1367, 2024.
  • M. A. Köprü, D. Öztürk, and B. Yıldırım, ‘Microgrid design and comparative analysis for regions with different wind speed and solar radiation rate’, Dicle University Journal of Engineering, vol. 15, no. 3, pp. 607–613, 2024.
  • S. Vendoti, M. Muralidhar, and R. Kiranmayi, ‘Techno-economic analysis of off-grid solar/wind/biogas/biomass/fuel cell/battery system for electrification in a cluster of villages by HOMER software’, Environment, Development and Sustainability, vol. 23, no. 1, pp. 351–372, 2021, doi: https://doi.org/10.1007/s10668-019-00583-2.
  • C. Li, L. Zhang, F. Qiu, and R. Fu, ‘Optimization and enviro-economic assessment of hybrid sustainable energy systems: The case study of a photovoltaic/biogas/diesel/battery system in Xuzhou, China’, Energy Strategy Reviews, vol. 41, p. 100852, 2022.
Toplam 30 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Ali Serkan Avcı 0000-0002-0761-8642

Gönderilme Tarihi 10 Ekim 2025
Kabul Tarihi 11 Aralık 2025
Yayımlanma Tarihi 29 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Cilt: 15 Sayı: 2

Kaynak Göster

APA Avcı, A. S. (2026). Techno-Economic and Environmental Analysis of a Biomass Based Hybrid Renewable Energy System for an Off-Grid Livestock Facility. European Journal of Technique (EJT), 15(2), 273-282. https://doi.org/10.36222/ejt.1800660