Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2020, Cilt: 31 Sayı: 1, 75 - 86, 30.04.2020

Öz


Kaynakça

  • Baker, G. H. (2005). A vulnerability assessment Methodology for Critical Infrastructure Sites. James Madison University. Bayraktarlı, Y., Ulfkjaer, J., Yazgan, U., & Faber, M. (2005). On the application of Bayesian probabilistic networks for earthquake risk management. 9th international conference on structural safety and reliability . Rotterdam: Millpress. Bouejla, A., Chaze, X., Guarnieri, F., & Napoli, A. (2014). A Bayesian network to manage risks of maritime piracy against offshore oil fields. Safety Science, 222-230. Burgherr P., H. S. (2014). Comparative Risk Assessment of Severe Accidents in the Energy Sector. Energy Policy, 45-56. Caia, A., Lullo, A., Ghetto, G., & Guadagnini, A. (2018). Probabilistic analysis of risk and mitigation of deepwater well blowouts and oik spills. Stoh Environ Res Risk Assess, 2647-2666. Chen, Y., & Pengzhi, L. (2018). Bayesian network of risk assessment for a super-large dam exposed to multiple natural risk sources. Stochastic Environmental Research and Risk Assessment. Cheng, S. (1993). Statistics of Dam Failure. ASCE, 97-105. Chongfu, H. (1996). Fuzzy risk assessment of urban natural hazards . Fuzzy Sets and Systems, 271-282. Costa, V., & Fernandes, W. (2017). Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator. Journal of Hydrology, 137-154. Dikmen, İ., Birgonul, T., & Han, S. (2007). Using fuzzy risk assessment to rate cost overrun risk in international construction projects. International Journal of Project Management, 494-505. E. K. Zavadskas, Z. T. (2010). Risk Assessment of Construction Projects. Journal of Civil Engineering and Management, 33-46. Ganji A, J. L. (2012). Advance first order second moment analysis:a case study. Stoch Environ Res Risk Assess, 33-42. Gao, H., Wang, Z., Jin, D., Guoxing, C., & Lipng, J. (2015). Fuzzy evaluation on seismic behavior of reservoir dams during the 2008 Wenchuan earthquake, China. Engineering Geology, 1-10. Gruetter, F. S. (1982). Analytical risk assessment for dams. International Commission on Large Dams. Rio de Janerio: International Commission on Large Dams. Gul, M., & Celik, E. (2018). Fuzzy rule-based Fine–Kinney risk assessment approach for rail transportation systems. Human and Ecological Risk Assessment:An International Journal, 1786-1812. Hirschberg, S. S. (1998). Severe Accidents in the Energy Sector. Villigen PSI: Swiss Federal Office of Energy. IEA. (2017). World Energy Outlook 2017. International Energy Agency(IEA). Kahraman, C., & Kaya, İ. (2009). Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. Human and Ecological Risk Assessment: An International Journal , 789-810. Kalinina, A., Spada, M., & Burgherr, P. (2018). Application of a Bayesian hierarchical modeling for risk assessment of accidents at hydropower dams. Safety Science, 164-177. Kokangul, A., Polat, U., & Dağsuyu, C. (2017). A new approximation for risk assessment using the AHP and Fine Kinney. Safety Science, 24-32. Kucukali, S. (2011). Risk assessment of river-type hydro power plants using fuzzy logic approach. Energy Policy, 6683-6688. Kwon HH, M. Y. (2005). Improvement of Overtopping Risk Evaluations Using Probabilistic Concepts for Existing dams. Stoch Environ Rs Risk Assess, 223-237. Lafitte, R. (1993). Probabilistic risk analysis of large dams:its value and limits. Water power Dam Construction, 13-16. Liao, H.-m., Yang, X.-g., Xu, F.-g., Xu, H., & Zhou, J.-w. (2018). A fuzzy comprehensive method for the risk assessment of a landslide-dammed lake. Environmental Earth Sciences, 1-14. Liu, X., Guo, S., Liu, P., Chen, L., & Li, X. (2011). Deriving optimal refill rules for multi-purpose reservoir operation. Water Resour Manag, 431-448. Napoles, O., Hernandez, D., Escobedo, D., & Arteaga, J. (2014). A continuous Bayesian network for earth earth dams' risk assessment:methodology and quantification. Structure and Infrastructure Engineering, 589-603. Oturakçı, M. (2017). Risk Değerlendirmesinde Bulanık Fine-Kinney Yöntemi ve Uygulaması. Karaelmas İş Sağlığı ve Güvenliği Dergisi, 17-25. Özgür, M. (2013). Metal Sektöründe Risk Analizi Uygulaması . İzmir: Çalışma ve Sosyal Güvenlik Bakanlığı. P, J., S., V., & C., R. (1997). Risk analyses of three Norwegian rockfill dams. International Conference Hydropower. Rotterdam: International Conference Hydropower. Ribas, J. R., & Díaz, J. I. (2019). A multicriteria fuzzy approximate reasoning approach for risk. Environmental Earth Sciences, 1-15. SEWG. (2015). Dams Sector Security Guidelines 2015. Homeland Security,Dams Sector Security Education Working Group. Smith, M. (2006). Dam risk analysis using Bayesian networks. ECI conference on geohazards. New York. Tolo, S., Patelli, E., & Beer, M. (2017). Robust vulnerability Analysis of nuclear facilities subject to external hazards. Stoh Environ Res Risk Assess, 2733-2756. Turan, A. (2015). energy. safety management, 50-56. Wu, X., Jiang, Z., Zhang, L., Skibniewski, M., & Zhong, J. (2015). Dynamic risk analysis for adjacent buildings in tunneling enviroments:A Bayesian network based approach. 1447-1461. Xiao, Y., Guo, S.-l., Xiong, L.-h., & Luo, Z. (2005). Research review on acceptable risk level for dam safety assessment. Journal of Safety and Environment. Xiaolu, L., Chunlei, L., Deyu, L., & Haibo, W. (2010). Evaluation of dam safety based on AHP combining with Fuzzy Math. Yangtze River. Xu, Y., Zhang, L., & Jia, J. (2011). Diagnosis of embankment dam distresses using Bayesian networks. Canadian Geotechnical Journal, 1630-1644.

BULANIK FINE-KINNEY YÖNTEMİYLE RİSK DEĞERLENDİRMESİ UYGULAMASI

Yıl 2020, Cilt: 31 Sayı: 1, 75 - 86, 30.04.2020

Öz

Barajlar ülkelerin en önemli kritik altyapılarından bir tanesidir. Barajlar içme suyu, sulama suyu, hidroelektrik enerji sağlamakta ve ayrıca baraj gölleri balıkçılık ve su sporlarında kullanılmaktadır. Ekonomik önemi ve büyük yapılar olmaları, onları tehditlere karşı daha savunmasız hale getirir. Bu çalışmada, bir baraj için, 8 (sekiz) adet insan yapımı ve doğal olarak meydana gelebilecek afetler (siber saldırı, terörist saldırısı, sabotaj, yangın, elektrik kesintisi, sel felaketi, deprem ve heyelan) tespit edilmiş ve bu afetler için Bulanık Fine-Kinney Yöntemi kullanılarak risk değerlendirmesi yapılmıştır. Yapılan çalışma sonucunda terörist saldırısı, deprem ve heyelanın baraj için en önemli riskler olduğu tespit edilmiştir.

Kaynakça

  • Baker, G. H. (2005). A vulnerability assessment Methodology for Critical Infrastructure Sites. James Madison University. Bayraktarlı, Y., Ulfkjaer, J., Yazgan, U., & Faber, M. (2005). On the application of Bayesian probabilistic networks for earthquake risk management. 9th international conference on structural safety and reliability . Rotterdam: Millpress. Bouejla, A., Chaze, X., Guarnieri, F., & Napoli, A. (2014). A Bayesian network to manage risks of maritime piracy against offshore oil fields. Safety Science, 222-230. Burgherr P., H. S. (2014). Comparative Risk Assessment of Severe Accidents in the Energy Sector. Energy Policy, 45-56. Caia, A., Lullo, A., Ghetto, G., & Guadagnini, A. (2018). Probabilistic analysis of risk and mitigation of deepwater well blowouts and oik spills. Stoh Environ Res Risk Assess, 2647-2666. Chen, Y., & Pengzhi, L. (2018). Bayesian network of risk assessment for a super-large dam exposed to multiple natural risk sources. Stochastic Environmental Research and Risk Assessment. Cheng, S. (1993). Statistics of Dam Failure. ASCE, 97-105. Chongfu, H. (1996). Fuzzy risk assessment of urban natural hazards . Fuzzy Sets and Systems, 271-282. Costa, V., & Fernandes, W. (2017). Bayesian estimation of extreme flood quantiles using a rainfall-runoff model and a stochastic daily rainfall generator. Journal of Hydrology, 137-154. Dikmen, İ., Birgonul, T., & Han, S. (2007). Using fuzzy risk assessment to rate cost overrun risk in international construction projects. International Journal of Project Management, 494-505. E. K. Zavadskas, Z. T. (2010). Risk Assessment of Construction Projects. Journal of Civil Engineering and Management, 33-46. Ganji A, J. L. (2012). Advance first order second moment analysis:a case study. Stoch Environ Res Risk Assess, 33-42. Gao, H., Wang, Z., Jin, D., Guoxing, C., & Lipng, J. (2015). Fuzzy evaluation on seismic behavior of reservoir dams during the 2008 Wenchuan earthquake, China. Engineering Geology, 1-10. Gruetter, F. S. (1982). Analytical risk assessment for dams. International Commission on Large Dams. Rio de Janerio: International Commission on Large Dams. Gul, M., & Celik, E. (2018). Fuzzy rule-based Fine–Kinney risk assessment approach for rail transportation systems. Human and Ecological Risk Assessment:An International Journal, 1786-1812. Hirschberg, S. S. (1998). Severe Accidents in the Energy Sector. Villigen PSI: Swiss Federal Office of Energy. IEA. (2017). World Energy Outlook 2017. International Energy Agency(IEA). Kahraman, C., & Kaya, İ. (2009). Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. Human and Ecological Risk Assessment: An International Journal , 789-810. Kalinina, A., Spada, M., & Burgherr, P. (2018). Application of a Bayesian hierarchical modeling for risk assessment of accidents at hydropower dams. Safety Science, 164-177. Kokangul, A., Polat, U., & Dağsuyu, C. (2017). A new approximation for risk assessment using the AHP and Fine Kinney. Safety Science, 24-32. Kucukali, S. (2011). Risk assessment of river-type hydro power plants using fuzzy logic approach. Energy Policy, 6683-6688. Kwon HH, M. Y. (2005). Improvement of Overtopping Risk Evaluations Using Probabilistic Concepts for Existing dams. Stoch Environ Rs Risk Assess, 223-237. Lafitte, R. (1993). Probabilistic risk analysis of large dams:its value and limits. Water power Dam Construction, 13-16. Liao, H.-m., Yang, X.-g., Xu, F.-g., Xu, H., & Zhou, J.-w. (2018). A fuzzy comprehensive method for the risk assessment of a landslide-dammed lake. Environmental Earth Sciences, 1-14. Liu, X., Guo, S., Liu, P., Chen, L., & Li, X. (2011). Deriving optimal refill rules for multi-purpose reservoir operation. Water Resour Manag, 431-448. Napoles, O., Hernandez, D., Escobedo, D., & Arteaga, J. (2014). A continuous Bayesian network for earth earth dams' risk assessment:methodology and quantification. Structure and Infrastructure Engineering, 589-603. Oturakçı, M. (2017). Risk Değerlendirmesinde Bulanık Fine-Kinney Yöntemi ve Uygulaması. Karaelmas İş Sağlığı ve Güvenliği Dergisi, 17-25. Özgür, M. (2013). Metal Sektöründe Risk Analizi Uygulaması . İzmir: Çalışma ve Sosyal Güvenlik Bakanlığı. P, J., S., V., & C., R. (1997). Risk analyses of three Norwegian rockfill dams. International Conference Hydropower. Rotterdam: International Conference Hydropower. Ribas, J. R., & Díaz, J. I. (2019). A multicriteria fuzzy approximate reasoning approach for risk. Environmental Earth Sciences, 1-15. SEWG. (2015). Dams Sector Security Guidelines 2015. Homeland Security,Dams Sector Security Education Working Group. Smith, M. (2006). Dam risk analysis using Bayesian networks. ECI conference on geohazards. New York. Tolo, S., Patelli, E., & Beer, M. (2017). Robust vulnerability Analysis of nuclear facilities subject to external hazards. Stoh Environ Res Risk Assess, 2733-2756. Turan, A. (2015). energy. safety management, 50-56. Wu, X., Jiang, Z., Zhang, L., Skibniewski, M., & Zhong, J. (2015). Dynamic risk analysis for adjacent buildings in tunneling enviroments:A Bayesian network based approach. 1447-1461. Xiao, Y., Guo, S.-l., Xiong, L.-h., & Luo, Z. (2005). Research review on acceptable risk level for dam safety assessment. Journal of Safety and Environment. Xiaolu, L., Chunlei, L., Deyu, L., & Haibo, W. (2010). Evaluation of dam safety based on AHP combining with Fuzzy Math. Yangtze River. Xu, Y., Zhang, L., & Jia, J. (2011). Diagnosis of embankment dam distresses using Bayesian networks. Canadian Geotechnical Journal, 1630-1644.
Toplam 1 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Babek Erdebilli (b.d.rouyendegh) 0000-0001-8860-3903

Lütfü Gür 0000-0002-2011-6751

Yayımlanma Tarihi 30 Nisan 2020
Kabul Tarihi 8 Nisan 2020
Yayımlandığı Sayı Yıl 2020 Cilt: 31 Sayı: 1

Kaynak Göster

APA Erdebilli (b.d.rouyendegh), B., & Gür, L. (2020). BULANIK FINE-KINNEY YÖNTEMİYLE RİSK DEĞERLENDİRMESİ UYGULAMASI. Endüstri Mühendisliği, 31(1), 75-86.

19736      14617      26287       15235           15236           15240      15242