Araştırma Makalesi
BibTex RIS Kaynak Göster

Minimum Dinamik İletim Hat Derecelendirmesi Kullanarak Güç Sistemin Güvenilirliğini Artırma

Yıl 2022, Cilt: 33 Sayı: 1, 229 - 242, 30.04.2022
https://doi.org/10.46465/endustrimuhendisligi.993529

Öz

Hem elektrik talebinde hem de yenilenebilir kaynakların kullanımındaki artış nedeniyle elektrik güç iletim altyapısı teknik sınırlarına yakın bir seviyede kullanılmaktadır. Dinamik iletim hat derecelendirmesi, mevcut iletim hatlarının daha verimli kullanılabileceği güç iletim yönetimindeki yeni uygulamalardan biridir. Literatürde dinamik derecelendirme genellikle güç sisteminin tüm hatlarına uygulanır. Bu yaklaşım, güç sistemi yöneticisini çok sayıda iletim hattını aynı anda izlemeye zorlar ve systemin ğüvenilirliğini tehlikeye sokar. Bu çalışmada, sistemin N-K güvenilirliğini etkili bir şekilde artırmak için çok az sayıda ve en uygun iletim hatlara dinamik derecelendirme uygulanması önerilmektedir. Dinamik derecelendirme için minimum sayıda iletim hatları bulmak için dayanıklı bir min-max-min üç katmanlı optimizasyon modeli geliştirilmiştir. Dualite teorisini kullanarak üç katmanlı problem iki katmanlı min-max probleme dönüştürülmüştür ve ardından iki katmanlı problemi çözmek için bir ayrıştırma (decomposition) yöntemi geliştirilmiştir. Çözüm yaklaşımı uygulamak ve sonuçları analiz etmek için iki test güç sistemi kullanılmıştır.

Kaynakça

  • Abboud, A. W., Fenton, K. R., Lehmer, J. P., Fehringer, B. A., Gentle, J. P., McJunkin, T. R., Le Blanc, K. L., Petty, M. A., Wandishin, M. S. (2019). Coupling computational fluid dynamics with the high resolution rapid refresh model for forecasting dynamic line ratings, Electric Power Systems Research, Volume 170, Pages 326-337, ISSN 0378-7796, Doi: https://doi.org/10.1016/j.epsr.2019.01.035
  • J. L. Aznarte and N. Siebert, (2017). Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study, IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 335-343, Feb. 2017, Doi: https://doi.org/ 10.1109/TPWRD.2016.2543818
  • Banerjee, B., Jayaweera, D., and Islam, S. M. (2014). Optimal scheduling with dynamic line ratings and intermittent wind power. IEEE PES General Meeting, Conference Exposition, pages 1–5, Doi: https: //doi.org/10.1109/PESGM.2014.6939381
  • Banerjee, B., Jayaweera, D., Islam, S. (2015). Risk constrained short-term scheduling with dynamic line ratings for increased penetration of wind power, Renewable Energy, Volume 83, Pages 1139-1146, ISSN 0960-1481, Doi: https:// doi.org/10.1016/j.renene.2015.05.053
  • Bucher, M. A., Vrakopoulou, M., and Andersson, G. (2013). Probabilistic N−1 security assessment incorporating dynamic line ratings. IEEE Power & Energy Society General Meeting, pages 1–5, Doi: https:// doi.org/10.1109/PESMG.2013.6672679
  • Ciniglio, O. and Deb, A. (2004). Optimizing transmission path utilization in idaho power, IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 830-834, Doi: https: //doi.org/10.1109/TPWRD.2003.823186
  • Dupin, R., Kariniotakis, G., Michiorri, A. (2019). Overhead lines Dynamic Line rating based on probabilistic day-ahead forecasting and risk assessment, International Journal of Electrical Power & Energy Systems, Volume 110, Pages 565-578, ISSN 0142-0615, Doi: https://doi.org/ 10.1016/j.ijepes.2019.03.043
  • Fernandez, E., Albizu, I., Bedialauneta, M.T., Mazon, A.J., Leite, P.T. (2016). Review of dynamic line rating systems for wind power integration, Renewable and Sustainable Energy Reviews, Volume 53, Pages 80-92, ISSN 1364-0321, Doi: https://doi.org/10.1016/j.rser.2015.07.149
  • Fernandes, S. W., Rosa, M. A., Issicaba, D. (2020). A robust dynamic line rating monitoring system through state estimation and bad data analysis, Electric Power Systems Research, Volume 189, 106648, ISSN 0378-7796, Doi: https://doi.org/ 10.1016/j.epsr.2020.106648
  • Fisher, E. B., O’Neill, R. P., and Ferris, M. C. (2008). Optimal transmission switching. IEEE Transactions on Power Systems, 23(3):1346–1355, Doi: https://doi.org/ 10.1109/TPWRS.2008.922256
  • Garifi, K. and Baker, K. (2020). Considering integer chance constraints for enforcing flexible line flow ratings. American Control Conference (ACC), pages 3134–3139, Doi: https://doi.org/10.23919/ACC45564.2020.9147669
  • Hemparuva, R. J. C., Simon, S. P., Kinattingal, S., Padhy, N. P. (2018). Geographic information system and weather based dynamic line rating for generation scheduling, Engineering Science and Technology, an International Journal, Volume 21, Issue 4, Pages 564-573, ISSN 2215-0986, Doi: http s://doi.org/10.1016/j.jestch.2018.05.011
  • A. Kirilenko, M. Esmaili and C. Y. Chung, (2021). Risk-Averse Stochastic Dynamic Line Rating Models, IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3070-3079, Doi: https://doi.org/10.1109/ TPWRS.2020.3045589
  • Y. Li, K. Xie, R. Xiao, B. Hu, H. Chao and D. Kong, (2018). Network-Constrained Unit Commitment Incorporating Dynamic Thermal Rating and Transmission Line Switching, 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 2018, pp. 1-6, Doi: https://doi.org/10.1109/EI2.2018.8582182
  • S. Madadi, B. Mohammadi-Ivatloo and S. Tohidi, (2020). Dynamic Line Rating Forecasting Based on Integrated Factorized Ornstein–Uhlenbeck Processes, IEEE Transactions on Power Delivery, vol. 35, no. 2, pp. 851-860, Doi: https:// doi.org/10.1109/TPWRD.2019.2929694
  • M. Nick, O. Alizadeh-Mousavi, R. Cherkaoui and M. Paolone, (2016). Security Constrained Unit Commitment With Dynamic Thermal Line Rating, IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2014-2025, Doi: https://doi.org/ 10.1109/TPWRS.2015.2445826
  • Numan, M., Feng, D., Abbas, F., Habib, S., Hao, S. (2021). Coordinated operation of reconfigurable networks with dynamic line rating for optimal utilization of renewable generation, International Journal of Electrical Power & Energy Systems, Volume 125, 106473, ISSN 0142-0615, Doi: https:// doi.org/10.1016/j.ijepes.2020.106473
  • Park, H., Jin, Y. G., Park, J. K. (2018). Stochastic security-constrained unit commitment with wind power generation based on dynamic line rating, International Journal of Electrical Power & Energy Systems, Volume 102, Pages 211-222, ISSN 0142-0615, Doi: https://doi.org/10.1016/j.ijepes. 2018.04.026
  • Power systems test case archive (1999), available: https://labs.ece.uw.edu/pstca/
  • Qiu, F. and Wang, J. (2015). Distributionally robust congestion management with dynamic line ratings. IEEE Transactions on Power Systems, 30(4):2198–2199, Doi: https://doi.org/10.1109/TPWRS.2014.2361012
  • Subcommittee, P. M. (1979). IEEE reliability test system. IEEE Transactions on Power Apparatus and Systems, PAS-98(6):2047–2054, Doi: https://doi.org/10.1109/TPAS.1979.319398
  • F. Teng, R. Dupin, A. Michiorri, G. Kariniotakis, Y. Chen and G. Strbac, (2018). Understanding the Benefits of Dynamic

Increasing Power System Reliability Using Minimum Dynamic Line Rating

Yıl 2022, Cilt: 33 Sayı: 1, 229 - 242, 30.04.2022
https://doi.org/10.46465/endustrimuhendisligi.993529

Öz

Due to increase in electricity demand and renewable resources penetration, power transmission infrastructure is utilized close to its technical limits. Dynamic line rating is one of the new practices in power transmission management by which existing transmission lines can be more efficiently utilized. In the literature, dynamic rating is usually applied to all lines of the power system which is not desirable as it is risky to simultaneously monitor a high number of transmission lines. In this paper we propose to apply dynamic rating on few and most suitable lines to effectively increase the system N–K reliability. We develop a robust min-max-min three-layer optimization model to find minimum number of lines for dynamic rating. We use duality theory and convert the three-layer problem into a two-layer min-max problem and then we develop a benders decomposition framework to solve the two-layer problem. We use two test power systems to demonstrate our solution approach and analyze the results.

Kaynakça

  • Abboud, A. W., Fenton, K. R., Lehmer, J. P., Fehringer, B. A., Gentle, J. P., McJunkin, T. R., Le Blanc, K. L., Petty, M. A., Wandishin, M. S. (2019). Coupling computational fluid dynamics with the high resolution rapid refresh model for forecasting dynamic line ratings, Electric Power Systems Research, Volume 170, Pages 326-337, ISSN 0378-7796, Doi: https://doi.org/10.1016/j.epsr.2019.01.035
  • J. L. Aznarte and N. Siebert, (2017). Dynamic Line Rating Using Numerical Weather Predictions and Machine Learning: A Case Study, IEEE Transactions on Power Delivery, vol. 32, no. 1, pp. 335-343, Feb. 2017, Doi: https://doi.org/ 10.1109/TPWRD.2016.2543818
  • Banerjee, B., Jayaweera, D., and Islam, S. M. (2014). Optimal scheduling with dynamic line ratings and intermittent wind power. IEEE PES General Meeting, Conference Exposition, pages 1–5, Doi: https: //doi.org/10.1109/PESGM.2014.6939381
  • Banerjee, B., Jayaweera, D., Islam, S. (2015). Risk constrained short-term scheduling with dynamic line ratings for increased penetration of wind power, Renewable Energy, Volume 83, Pages 1139-1146, ISSN 0960-1481, Doi: https:// doi.org/10.1016/j.renene.2015.05.053
  • Bucher, M. A., Vrakopoulou, M., and Andersson, G. (2013). Probabilistic N−1 security assessment incorporating dynamic line ratings. IEEE Power & Energy Society General Meeting, pages 1–5, Doi: https:// doi.org/10.1109/PESMG.2013.6672679
  • Ciniglio, O. and Deb, A. (2004). Optimizing transmission path utilization in idaho power, IEEE Transactions on Power Delivery, vol. 19, no. 2, pp. 830-834, Doi: https: //doi.org/10.1109/TPWRD.2003.823186
  • Dupin, R., Kariniotakis, G., Michiorri, A. (2019). Overhead lines Dynamic Line rating based on probabilistic day-ahead forecasting and risk assessment, International Journal of Electrical Power & Energy Systems, Volume 110, Pages 565-578, ISSN 0142-0615, Doi: https://doi.org/ 10.1016/j.ijepes.2019.03.043
  • Fernandez, E., Albizu, I., Bedialauneta, M.T., Mazon, A.J., Leite, P.T. (2016). Review of dynamic line rating systems for wind power integration, Renewable and Sustainable Energy Reviews, Volume 53, Pages 80-92, ISSN 1364-0321, Doi: https://doi.org/10.1016/j.rser.2015.07.149
  • Fernandes, S. W., Rosa, M. A., Issicaba, D. (2020). A robust dynamic line rating monitoring system through state estimation and bad data analysis, Electric Power Systems Research, Volume 189, 106648, ISSN 0378-7796, Doi: https://doi.org/ 10.1016/j.epsr.2020.106648
  • Fisher, E. B., O’Neill, R. P., and Ferris, M. C. (2008). Optimal transmission switching. IEEE Transactions on Power Systems, 23(3):1346–1355, Doi: https://doi.org/ 10.1109/TPWRS.2008.922256
  • Garifi, K. and Baker, K. (2020). Considering integer chance constraints for enforcing flexible line flow ratings. American Control Conference (ACC), pages 3134–3139, Doi: https://doi.org/10.23919/ACC45564.2020.9147669
  • Hemparuva, R. J. C., Simon, S. P., Kinattingal, S., Padhy, N. P. (2018). Geographic information system and weather based dynamic line rating for generation scheduling, Engineering Science and Technology, an International Journal, Volume 21, Issue 4, Pages 564-573, ISSN 2215-0986, Doi: http s://doi.org/10.1016/j.jestch.2018.05.011
  • A. Kirilenko, M. Esmaili and C. Y. Chung, (2021). Risk-Averse Stochastic Dynamic Line Rating Models, IEEE Transactions on Power Systems, vol. 36, no. 4, pp. 3070-3079, Doi: https://doi.org/10.1109/ TPWRS.2020.3045589
  • Y. Li, K. Xie, R. Xiao, B. Hu, H. Chao and D. Kong, (2018). Network-Constrained Unit Commitment Incorporating Dynamic Thermal Rating and Transmission Line Switching, 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), 2018, pp. 1-6, Doi: https://doi.org/10.1109/EI2.2018.8582182
  • S. Madadi, B. Mohammadi-Ivatloo and S. Tohidi, (2020). Dynamic Line Rating Forecasting Based on Integrated Factorized Ornstein–Uhlenbeck Processes, IEEE Transactions on Power Delivery, vol. 35, no. 2, pp. 851-860, Doi: https:// doi.org/10.1109/TPWRD.2019.2929694
  • M. Nick, O. Alizadeh-Mousavi, R. Cherkaoui and M. Paolone, (2016). Security Constrained Unit Commitment With Dynamic Thermal Line Rating, IEEE Transactions on Power Systems, vol. 31, no. 3, pp. 2014-2025, Doi: https://doi.org/ 10.1109/TPWRS.2015.2445826
  • Numan, M., Feng, D., Abbas, F., Habib, S., Hao, S. (2021). Coordinated operation of reconfigurable networks with dynamic line rating for optimal utilization of renewable generation, International Journal of Electrical Power & Energy Systems, Volume 125, 106473, ISSN 0142-0615, Doi: https:// doi.org/10.1016/j.ijepes.2020.106473
  • Park, H., Jin, Y. G., Park, J. K. (2018). Stochastic security-constrained unit commitment with wind power generation based on dynamic line rating, International Journal of Electrical Power & Energy Systems, Volume 102, Pages 211-222, ISSN 0142-0615, Doi: https://doi.org/10.1016/j.ijepes. 2018.04.026
  • Power systems test case archive (1999), available: https://labs.ece.uw.edu/pstca/
  • Qiu, F. and Wang, J. (2015). Distributionally robust congestion management with dynamic line ratings. IEEE Transactions on Power Systems, 30(4):2198–2199, Doi: https://doi.org/10.1109/TPWRS.2014.2361012
  • Subcommittee, P. M. (1979). IEEE reliability test system. IEEE Transactions on Power Apparatus and Systems, PAS-98(6):2047–2054, Doi: https://doi.org/10.1109/TPAS.1979.319398
  • F. Teng, R. Dupin, A. Michiorri, G. Kariniotakis, Y. Chen and G. Strbac, (2018). Understanding the Benefits of Dynamic
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Endüstri Mühendisliği
Bölüm Araştırma Makaleleri
Yazarlar

Masood Jabarnejad 0000-0003-1633-5094

Erken Görünüm Tarihi 22 Nisan 2022
Yayımlanma Tarihi 30 Nisan 2022
Kabul Tarihi 27 Mart 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 33 Sayı: 1

Kaynak Göster

APA Jabarnejad, M. (2022). Increasing Power System Reliability Using Minimum Dynamic Line Rating. Endüstri Mühendisliği, 33(1), 229-242. https://doi.org/10.46465/endustrimuhendisligi.993529

19736      14617      26287       15235           15236           15240      15242