Araştırma Makalesi
PDF Mendeley EndNote BibTex Kaynak Göster

Anadolu endemik kaplan böceği, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae)’de eşeysel dimorfizm: geometrik morfometrinin etkinliğini gösteren bir çalışma

Yıl 2020, Cilt 44, Sayı 4, 425 - 436, 31.12.2020
https://doi.org/10.16970/entoted.680696

Öz

Eşeysel dimorfizm, kaplan böceklerinde türler arası varyasyonun önemli bir kaynağıdır. Buna rağmen, kaplan böceklerindeki eşeysel dimorfizm hakkında az şey bilinmektedir. Bu makale, endemik kaplan böceği Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae)'nin baş ve pronotumundaki fenotipik değişiklikler bağlamında erkek ve dişilerin morfolojisini karşılaştırarak eşeysel dimorfizm alanındaki literatüre katkıda bulunmaktadır. Araştırmada incelenen tüm örnekler, 2016 yılında Mayıs-Ağustos ayları arasında Kırşehir (Türkiye) İlinde bulunan Seyfe Gölü çevresindeki tuzlu topraklardan toplanmıştır. Spesifik olarak, kaplan böceklerinin eşeysel dimorfizminin analizinde geometrik morfometrinin etkinliği değerlendirilmiştir. Baş ve pronotum şekil varyasyonlarında istatistiksel olarak anlamlı farklılıklar bulunmuş ve regresyon sonuçları cinsiyetler arası bu şekil farklılaşmasında büyüklüğün etkisinin çok az olduğunu göstermiştir. Ayrıca sadece şekil değişkenlerinin kullanıldığında, Jack-knife çapraz geçerlenmiş doğru sınıflandırma yüzdesi sırasıyla baş için %88 ve pronotum için %85 olarak bulunmuştur. Sonuç olarak geometrik morfometri, kaplan böceklerinde eşeysel dimorfizmin belirlenmesinde etkili ve kullanışlı bir yöntemdir.

Kaynakça

  • Acevedo, A. M. T., 2015. Geometric morphometric analysis of the head, pronotum and elytra of Brontispa longissima (Gestro) collected in selected provinces in the Philippines. Advances in Environmental Biology, 9 (25): 18-26.
  • Alencar, C. E. R. D., P. A. Lima-Filho, W. F. Molina & F. A. M. Freire, 2014. Sexual shape dimorphism of the Mangrove crab Ucides cordatus (Linnaeus, 1763) (Decapoda, Ucididae) accessed through geometric morphometric. The Scientific World Journal, 2014 (206168): 1-8.
  • Allen, C. E., B. J. Zwaan & P. M. Brakefield, 2011. Evolution of sexual dimorphism in the Lepidoptera. Annual Review of Entomology, 56 (1): 445-464.
  • Anonymous, 2020. Survey areas of Seyfe Lake in Kırşehir Province, Turkey. (Web page: https://earth.google.com) (Date accessed: January 2020).
  • Antunes-Carvalho, C., M. Yavorskaya, P. Gnaspini, I. Ribera, J. U. Hammel & R. G. Beutel, 2016. Cephalic anatomy and three-dimensional reconstruction of the head of Catops ventricosus (Weise, 1877) (Coleoptera: Leiodidae: Cholevinae). Organisms Diversity & Evolution, 17 (1): 199-212.
  • Assmann, T., E. Boutaud, J. Buse, J. Gebert, C. Drees, A. L. L. Friedman, F. Khoury, T. Marcus, E. Orbach, I. Renan, C. Schmidt & P. Zumstein, 2018. The tiger beetles (Coleoptera, Cicindelidae) of the southern Levant and adjacent territories: from cybertaxonomy to conservation biology. ZooKeys, 734: 43-103.
  • Azadbakhsh, S. & J. Nozari, 2015. Checklist of the Iranian ground beetles (Coleoptera; Carabidae). Zootaxa, 4024 (1): 1-108.
  • Baig, M. M., A. K. Dubey & V. V. Ramamurthy, 2016. Determination of sexual dimorphism in the puparia of four whitefly pest species from India (Hemiptera: Aleyrodidae). Acta Entomologica Musei Nationalis Pragae, 56 (2): 447-460.
  • Ball, G. E., J. H. Acorn & D. Shpeley, 2011. Mandibles and labrum-epipharynx of tiger beetles: basic structure and evolution (Coleoptera, Carabidae, Cicindelitae). ZooKeys, 147: 39-83.
  • Baracchi, D., L. Dapporto & S. Turillazzi, 2011. Relevance of wing morphology in distinguishing and classifying genera and species of Stenogastrinae wasps. Contributions to Zoology, 80 (3): 191-199.
  • Benítez, H. A., M. J. Sanzana, V. Jerez, L. E. Parra, C. E. Hernández & C. B. Canales-Aguirre, 2013. Sexual shape and size dimorphism in carabid beetles of the genus Ceroglossus: is geometric body size similar between sexes due to sex ratio? Zoological Science, 30 (4): 289-295.
  • Benítez, H. A. & H. A. Vargas, 2017. Sexual dimorphism and population differentiation in the Chilean Neotropical moth Macaria mirthae (Lepidoptera, Geometridae): a wing geometric morphometric example. Revista Brasileira de Entomologia, 61 (4): 365-369.
  • Bookstein, F. L., 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science, 1 (2): 181-222.
  • Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge, UK, 435 pp.
  • Breno, M., H. Leirs & S. Van Dongen, 2011. Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae). Journal of Mammalogy, 92 (6): 1395-1406.
  • Camargo, W. R. F., N. F. Camargo, D. C. V. Corrêa, A. J. A. Camargo & I. R. Diniz, 2015. Sexual dimorphism and allometric effects associated with the wing shape of seven moth species of Sphingidae (Lepidoptera: Bombycoidea). Journal of Insect Science, 15 (1): 1-9.
  • Cassola, F., 1999. Studies on tiger beetles. CVII. The cicindelid fauna of Anatolia: faunistics and biogeography (Coleoptera, Cicindelidae). Biogeographia, 20 (1): 229-276.
  • Cassola, F. & T. Bouyer, 2007. Revision of the African tiger beetle genus Neochila Basilewsky, 1953 (Coleoptera: Cicindelidae). Tijdschrift voor Entomologie, 150 (2): 401-420.
  • Cruz, L. M. L. D., M. A. J. Torres, A. T. Barrion, R. Joshi, L. S. Sebastian & C. G. Demayo, 2011. Geometric morphometric analysis of the head, pronotum and genitalia of the rice black bug associated with selected rice types. Egyptian Academic Journal of Biological Sciences A Entomology, 4 (1): 21-31.
  • Eldred, T., C. Meloro, C. Scholtz, D. Murphy, K. Fincken & M. Hayward, 2016. Does size matter for horny beetles? A geometric morphometric analysis of interspecific and intersexual size and shape variation in Colophon haughtoni Barnard, 1929, and C. kawaii Mizukami, 1997 (Coleoptera: Lucanidae). Organisms Diversity & Evolution, 16 (4): 821-833.
  • Franzen, M. & W. Heinz, 2005. Morphology, genitalia, and natural history notes on the enigmatic tiger beetle, Mantica horni Kolbe, 1896 (Coleoptera, Cicindelidae). Bonner Zoologische Beiträge, 53 (2004): 297-301.
  • Franzen, M., 1996. Zur systematik von Cephalota circumdata Dejean in der Türkei: beschreibung von zwei neuen unterarten aus zentralanatolien (Coleoptera: Carabidae: Cicindelinae). Coleoptera (Schwanfelder Coleopterologische Mitteilungen), 24: 1-12.
  • Franzen, M., 2007. A new species of tiger beetle of the Cicindela campestris group from southern Turkey, with remarks on the identity of C. herbacea Klug, 1832 and other taxa related to C. desertorum Dejean, 1825. Spixiana, 30 (1): 13-24.
  • Gebert, J., 1999. Bemerkungen zur phylogenie und verbreitung von Cephalota (Taenidia) circumdata Dejean 1822 (Col., Carabidae, Cicindelinae). Entomologische Nachrichten und Berichte, 43 (1): 27-32.
  • Gómez, G., L. Jaramillo & M. M. Correa, 2013. Wing geometric morphometrics and molecular assessment of members in the Albitarsis complex from Colombia. Molecular Ecology Resources, 13 (6): 1082-1092.
  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): 1-9.
  • Hlavac, T. F., 1972. The prothorax of Coleoptera: origin, major features of variation. Psyche, 79 (3): 123-149.
  • Hood, C. S., 2000. Geometric morphometric approaches to the study of sexual size dimorphism in mammals. Hystrix, 11 (1): 77-90.
  • Hsiao, Y., P. Hsu, S. Kuo, M. Lee & P. Yang, 2015. Redescription of Laemoglyptus taihorinensis (Coleoptera: Cantharidae), with contribution to female morphology and description of copulation. Acta Zoologica Bulgarica, 67 (2): 193-198.
  • Jaskuła, R., 2005. “Mandible Sexual Dimorphism in Cicindela hybrida hybrida (Cicindelidae), 233-239”. In: Protection of Coleoptera in the Baltic Sea Region (Eds. J. Skłodowski, S. Huruk, A. Barševskis & S. Tarasiuk). Warsaw Agricultural University Press, Warsaw, 240 pp.
  • Jaskuła, R., T. Rewicz, M. Płóciennik & M. Grabowski, 2016. Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences. PeerJ, 4: e2128.
  • Jones, T. K. & W. E. Conner, 2018. Pre-mating reproductive isolation in tiger beetles (Carabidae: Cicindelinae): an examination of the role of visual and morphological feedback. Journal of Insect Behavior, 31 (6): 672-688.
  • Jun-Yan, S., W. Jia-Xu, D. Yan-Ju, G. Kai-Le & Y. Yu-Xia, 2015. Description of sexual dimorphism in hind wing morphology of cantharid beetles based on a geometric morphometric analysis. International Journal of Fauna and Biological Studies, 2 (3): 74-78.
  • Kaliontzopoulou, A., 2011. Geometric morphometrics in herpetology: modern tools for enhancing the study of morphological variation in amphibians and reptiles. Basic and Applied Herpetology, 25 (2011): 5-32.
  • Kaliontzopoulou, A., M. A. Carretero & G. A. Llorente, 2007. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. Journal of Morphology, 268 (2): 152-165.
  • Kawano, K., 2006. Sexual dimorphism and the making of oversized male characters in beetles (Coleoptera). Annals of the Entomological Society of America, 99 (2): 327-341.
  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11 (2): 353-357.
  • Kritsky, G. & S. Simon, 1995. Mandibular sexual dimorphism in Cicindela Linnaeus (Coleoptera: Cicindelidae). The Coleopterists Bulletin, 49 (2): 143-148.
  • Liu, M., N. Ma & B. Z. Hua, 2016. Intraspecific morphological variation of the scorpionfly Dicerapanorpa magna (Chou) (Mecoptera: Panorpidae) based on geometric morphometric analysis of wings. Contributions to Zoology, 85 (1): 1-11.
  • Maeno, K. O., S. Nakamura & M. A. O. Babah, 2012. Sexing live adults of the three species of darkling beetle (Coleoptera: Tenebrionidae) and morphological characteristics. Annals of the Entomological Society of America, 105 (5): 726-730.
  • Matalin, A. V. & V. I. Chikatunov, 2016. The tiger beetles (Coleoptera: Carabidae: Cicindelinae) of Israel and adjacent lands. ZooKeys, 578: 115-160.
  • Meng, Y., G. Wang, D. Xiong, H. Liu, X. Liu, L. Wang & J. Zhang, 2018. Geometric morphometric analysis of the morphological variation among three Lenoks of genus Brachymystax in China. Pakistan Journal of Zoology, 50 (3): 885-895.
  • Minoli, I., M. Morando & L. J. Avila, 2016. Sexual dimorphism and interspecific head variation in the Liolaemus melanops complex (Squamata: Liolaemini) based on geometric morphometrics. Herpetological Journal, 26 (3): 227-237.
  • Mitteroecker, P. & P. Gunz, 2009. Advances in geometric morphometrics. Evolutionary Biology, 36 (2): 235-247.
  • Moneva, C. S. O., C. G. Demayo & M. A. J. Torres, 2012. Applications of geometric morphometric analysis in describing sexual dimorphism in shell shapes in Vivipara angularis Muller (Family Viviparidae). Animal Biology & Animal Husbandry, 4 (1): 14-19.
  • Moraes, S. S., L. W. Cardoso, K. L. Silva-Brandão & M. Duarte, 2016. Extreme sexual dimorphism and polymorphism in two species of the tiger moth genus Dysschema (Lepidoptera: Erebidae): association between males and females, sexual mimicry and melanism revealed by integrative taxonomy. Systematics and Biodiversity, 15 (3): 1-15.
  • Ober, K. A. & C. T. Connolly, 2015. Geometric morphometric and phylogenetic analyses of Arizona Sky Island populations of Scaphinotus petersi Roeschke (Coleoptera: Carabidae). Zoological Journal of the Linnean Society, 175 (1): 107-118.
  • Pearson, D. L., 1988. Biology of tiger beetles. Annual Review of Entomology, 33 (1): 123-147.
  • Pearson, D. L. & A. P. Vogler, 2001. Tiger Beetles. The Evolution, Ecology and Diversity of the Cicindelids. Cornell University Press, Ithaca and London, 333 pp.
  • Polihronakis, M., 2006. Morphometric analysis of intraspecific shape variation in male and female genitalia of Phyllophaga hirticula (Coleoptera: Scarabaeidae: Melolonthinae). Annals of the Entomological Society of America, 99 (1): 144-150.
  • Pretorius, E. & C. H. Scholtz, 2001. Geometric morphometrics and the analysis of higher taxa: a case study based on the metendosternite of the Scarabaeoidea (Coleoptera). Biological Journal of the Linnean Society, 74 (1): 35-50.
  • Punzalan, D. & D. J. Hosken, 2010. Sexual dimorphism: why the sexes are (and are not) different. Current Biology, 20 (22): R972-R973.
  • Rohlf, F. J., 2017. tpsDig, 2.17. (Web page: https://life.bio.sunysb.edu/morph) (Date accessed:15 May 2019).
  • Rohlf, F. J. & L. F. Marcus, 1993. A revolution morphometrics. Trends in Ecology & Evolution, 8 (4): 129-132.
  • Rohlf, F. J. & D. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39 (1): 40-59.
  • Satoh, A. & M. Hori, 2004. Interpopulation differences in the mandible size of the coastal tiger beetle Lophyridia angulata associated with different sympatric species. Entomological Science, 7 (3): 211-217.
  • Satoh, A., T. Uéda, Y. Enokido & M. Hori, 2003. Patterns of species assemblages and geographical distributions associated with mandible size differences in coastal tiger beetles in Japan. Population Ecology, 45 (2): 67-74.
  • Solis, M. F., J. J. Arroyo, K. A. Garcia, F. Zapico & E. Requieron, 2015. Geometric morphometric analysis on sexual dimorphism of guppy Poecilia reticulata in Lake Sebu, South Cotabato, Philippines. Research Journal of Animal, Veterinary and Fishery Sciences, 3 (1): 1-9.
  • Sukhodolskaya, R. A. & A. A. Saveliev, 2017. Impact of environmental factors on the body shape variation and sexual shape dimorphism in Carabus granulatus L. (Coleoptera: Carabidae). Zoological Systematics, 42 (1): 71-89.
  • Tamagnini, D., J. Stephenson, R. P. Brown & C. Meloro, 2018. Geometric morphometric analyses of sexual dimorphism and allometry in two sympatric snakes: Natrix helvetica (Natricidae) and Vipera berus (Viperidae). Zoology, 129: 25-34.
  • Tatsuta, H., K. H. Takahashi & Y. Sakamaki, 2018. Geometric morphometrics in entomology: basics and applications. Entomological Science, 21 (2): 164-184.
  • Teder, T., 2014. Sexual size dimorphism requires a corresponding sex difference in development time: a meta-analysis in insects. Functional Ecology, 28 (2): 479-486.
  • Torres, M. A. J., C. G. Demayo, A. T. Barrion, L. S. Sebastian & A. A. Barrion, 2010. Relative warp analysis of shape variability of the head and pronotum in selected populations of the rice black bug. Australian Journal of Basic and Applied Sciences, 4 (10): 4655-4670.
  • Uniyal, V. P. & V. Bhargav, 2007. Tiger Beetles: A Field Study in the Shivaliks of Himachal Pradesh. Wildlife Institute of Indiav Press, Dehradun, 80 pp.
  • Vesović, N., A. Ivanović & S. Ćurčić, 2019. Sexual size and shape dimorphism in two ground beetle taxa, Carabus (Procrustes) coriaceus cerisyi and C. (Morphocarabus) kollari praecellens (Coleoptera: Carabidae) - A geometric morphometric approach. Arthropod Structure & Development, 49: 1-9.
  • Virginio, F., P. O. Vidal & L. Suesdek, 2015. Wing sexual dimorphism of pathogen-vector culicids. Parasites & Vectors, 8 (159): 1-9.
  • Wyman, M. J., J. R. Stinchcombe & L. Rowe, 2013. A multivariate view of the evolution of sexual dimorphism. Journal of Evolutionary Biology, 26 (10): 2070-2080.
  • Young, O. P., 2015. Size relationships, early reproductive status, and mandibular wear in adult Tetracha (=Megacephala) carolina (L.) (Coleoptera: Carabidae: Cicindelinae). The Coleopterists Bulletin, 69 (1): 167-173.

Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics

Yıl 2020, Cilt 44, Sayı 4, 425 - 436, 31.12.2020
https://doi.org/10.16970/entoted.680696

Öz

Sexual dimorphism is an important source of intraspecies variation in tiger beetles. However, little is known about sexual dimorphism in tiger beetles. This article contributes the literature in the field of sexual dimorphism by comparing the morphology of males and females in the context of phenotypic changes in the head and pronotum of endemic tiger beetle Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae). All the specimens examined in the study were gathered during May and August of 2016 from salty soils around Seyfe Lake located in Kırşehir Province, Turkey. Specifically, the efficacy of geometric morphometrics was assessed in the analysis of sexual dimorphism of tiger beetles. Statistically significant differences were found in the head and pronotum shape variation and regression results indicated that size has little influence on the differentiation of shape among sexes. Moreover, the jackknifed cross-validated correct classification percentages for head and pronotum were 88% and 85%, respectively when using only the shape variables. Consequently, geometric morphometrics is an effective and useful method to determine sexual dimorphism in tiger beetles.

Kaynakça

  • Acevedo, A. M. T., 2015. Geometric morphometric analysis of the head, pronotum and elytra of Brontispa longissima (Gestro) collected in selected provinces in the Philippines. Advances in Environmental Biology, 9 (25): 18-26.
  • Alencar, C. E. R. D., P. A. Lima-Filho, W. F. Molina & F. A. M. Freire, 2014. Sexual shape dimorphism of the Mangrove crab Ucides cordatus (Linnaeus, 1763) (Decapoda, Ucididae) accessed through geometric morphometric. The Scientific World Journal, 2014 (206168): 1-8.
  • Allen, C. E., B. J. Zwaan & P. M. Brakefield, 2011. Evolution of sexual dimorphism in the Lepidoptera. Annual Review of Entomology, 56 (1): 445-464.
  • Anonymous, 2020. Survey areas of Seyfe Lake in Kırşehir Province, Turkey. (Web page: https://earth.google.com) (Date accessed: January 2020).
  • Antunes-Carvalho, C., M. Yavorskaya, P. Gnaspini, I. Ribera, J. U. Hammel & R. G. Beutel, 2016. Cephalic anatomy and three-dimensional reconstruction of the head of Catops ventricosus (Weise, 1877) (Coleoptera: Leiodidae: Cholevinae). Organisms Diversity & Evolution, 17 (1): 199-212.
  • Assmann, T., E. Boutaud, J. Buse, J. Gebert, C. Drees, A. L. L. Friedman, F. Khoury, T. Marcus, E. Orbach, I. Renan, C. Schmidt & P. Zumstein, 2018. The tiger beetles (Coleoptera, Cicindelidae) of the southern Levant and adjacent territories: from cybertaxonomy to conservation biology. ZooKeys, 734: 43-103.
  • Azadbakhsh, S. & J. Nozari, 2015. Checklist of the Iranian ground beetles (Coleoptera; Carabidae). Zootaxa, 4024 (1): 1-108.
  • Baig, M. M., A. K. Dubey & V. V. Ramamurthy, 2016. Determination of sexual dimorphism in the puparia of four whitefly pest species from India (Hemiptera: Aleyrodidae). Acta Entomologica Musei Nationalis Pragae, 56 (2): 447-460.
  • Ball, G. E., J. H. Acorn & D. Shpeley, 2011. Mandibles and labrum-epipharynx of tiger beetles: basic structure and evolution (Coleoptera, Carabidae, Cicindelitae). ZooKeys, 147: 39-83.
  • Baracchi, D., L. Dapporto & S. Turillazzi, 2011. Relevance of wing morphology in distinguishing and classifying genera and species of Stenogastrinae wasps. Contributions to Zoology, 80 (3): 191-199.
  • Benítez, H. A., M. J. Sanzana, V. Jerez, L. E. Parra, C. E. Hernández & C. B. Canales-Aguirre, 2013. Sexual shape and size dimorphism in carabid beetles of the genus Ceroglossus: is geometric body size similar between sexes due to sex ratio? Zoological Science, 30 (4): 289-295.
  • Benítez, H. A. & H. A. Vargas, 2017. Sexual dimorphism and population differentiation in the Chilean Neotropical moth Macaria mirthae (Lepidoptera, Geometridae): a wing geometric morphometric example. Revista Brasileira de Entomologia, 61 (4): 365-369.
  • Bookstein, F. L., 1986. Size and shape spaces for landmark data in two dimensions. Statistical Science, 1 (2): 181-222.
  • Bookstein, F. L., 1991. Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge University Press, Cambridge, UK, 435 pp.
  • Breno, M., H. Leirs & S. Van Dongen, 2011. Traditional and geometric morphometrics for studying skull morphology during growth in Mastomys natalensis (Rodentia: Muridae). Journal of Mammalogy, 92 (6): 1395-1406.
  • Camargo, W. R. F., N. F. Camargo, D. C. V. Corrêa, A. J. A. Camargo & I. R. Diniz, 2015. Sexual dimorphism and allometric effects associated with the wing shape of seven moth species of Sphingidae (Lepidoptera: Bombycoidea). Journal of Insect Science, 15 (1): 1-9.
  • Cassola, F., 1999. Studies on tiger beetles. CVII. The cicindelid fauna of Anatolia: faunistics and biogeography (Coleoptera, Cicindelidae). Biogeographia, 20 (1): 229-276.
  • Cassola, F. & T. Bouyer, 2007. Revision of the African tiger beetle genus Neochila Basilewsky, 1953 (Coleoptera: Cicindelidae). Tijdschrift voor Entomologie, 150 (2): 401-420.
  • Cruz, L. M. L. D., M. A. J. Torres, A. T. Barrion, R. Joshi, L. S. Sebastian & C. G. Demayo, 2011. Geometric morphometric analysis of the head, pronotum and genitalia of the rice black bug associated with selected rice types. Egyptian Academic Journal of Biological Sciences A Entomology, 4 (1): 21-31.
  • Eldred, T., C. Meloro, C. Scholtz, D. Murphy, K. Fincken & M. Hayward, 2016. Does size matter for horny beetles? A geometric morphometric analysis of interspecific and intersexual size and shape variation in Colophon haughtoni Barnard, 1929, and C. kawaii Mizukami, 1997 (Coleoptera: Lucanidae). Organisms Diversity & Evolution, 16 (4): 821-833.
  • Franzen, M. & W. Heinz, 2005. Morphology, genitalia, and natural history notes on the enigmatic tiger beetle, Mantica horni Kolbe, 1896 (Coleoptera, Cicindelidae). Bonner Zoologische Beiträge, 53 (2004): 297-301.
  • Franzen, M., 1996. Zur systematik von Cephalota circumdata Dejean in der Türkei: beschreibung von zwei neuen unterarten aus zentralanatolien (Coleoptera: Carabidae: Cicindelinae). Coleoptera (Schwanfelder Coleopterologische Mitteilungen), 24: 1-12.
  • Franzen, M., 2007. A new species of tiger beetle of the Cicindela campestris group from southern Turkey, with remarks on the identity of C. herbacea Klug, 1832 and other taxa related to C. desertorum Dejean, 1825. Spixiana, 30 (1): 13-24.
  • Gebert, J., 1999. Bemerkungen zur phylogenie und verbreitung von Cephalota (Taenidia) circumdata Dejean 1822 (Col., Carabidae, Cicindelinae). Entomologische Nachrichten und Berichte, 43 (1): 27-32.
  • Gómez, G., L. Jaramillo & M. M. Correa, 2013. Wing geometric morphometrics and molecular assessment of members in the Albitarsis complex from Colombia. Molecular Ecology Resources, 13 (6): 1082-1092.
  • Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4 (1): 1-9.
  • Hlavac, T. F., 1972. The prothorax of Coleoptera: origin, major features of variation. Psyche, 79 (3): 123-149.
  • Hood, C. S., 2000. Geometric morphometric approaches to the study of sexual size dimorphism in mammals. Hystrix, 11 (1): 77-90.
  • Hsiao, Y., P. Hsu, S. Kuo, M. Lee & P. Yang, 2015. Redescription of Laemoglyptus taihorinensis (Coleoptera: Cantharidae), with contribution to female morphology and description of copulation. Acta Zoologica Bulgarica, 67 (2): 193-198.
  • Jaskuła, R., 2005. “Mandible Sexual Dimorphism in Cicindela hybrida hybrida (Cicindelidae), 233-239”. In: Protection of Coleoptera in the Baltic Sea Region (Eds. J. Skłodowski, S. Huruk, A. Barševskis & S. Tarasiuk). Warsaw Agricultural University Press, Warsaw, 240 pp.
  • Jaskuła, R., T. Rewicz, M. Płóciennik & M. Grabowski, 2016. Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences. PeerJ, 4: e2128.
  • Jones, T. K. & W. E. Conner, 2018. Pre-mating reproductive isolation in tiger beetles (Carabidae: Cicindelinae): an examination of the role of visual and morphological feedback. Journal of Insect Behavior, 31 (6): 672-688.
  • Jun-Yan, S., W. Jia-Xu, D. Yan-Ju, G. Kai-Le & Y. Yu-Xia, 2015. Description of sexual dimorphism in hind wing morphology of cantharid beetles based on a geometric morphometric analysis. International Journal of Fauna and Biological Studies, 2 (3): 74-78.
  • Kaliontzopoulou, A., 2011. Geometric morphometrics in herpetology: modern tools for enhancing the study of morphological variation in amphibians and reptiles. Basic and Applied Herpetology, 25 (2011): 5-32.
  • Kaliontzopoulou, A., M. A. Carretero & G. A. Llorente, 2007. Multivariate and geometric morphometrics in the analysis of sexual dimorphism variation in Podarcis lizards. Journal of Morphology, 268 (2): 152-165.
  • Kawano, K., 2006. Sexual dimorphism and the making of oversized male characters in beetles (Coleoptera). Annals of the Entomological Society of America, 99 (2): 327-341.
  • Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources, 11 (2): 353-357.
  • Kritsky, G. & S. Simon, 1995. Mandibular sexual dimorphism in Cicindela Linnaeus (Coleoptera: Cicindelidae). The Coleopterists Bulletin, 49 (2): 143-148.
  • Liu, M., N. Ma & B. Z. Hua, 2016. Intraspecific morphological variation of the scorpionfly Dicerapanorpa magna (Chou) (Mecoptera: Panorpidae) based on geometric morphometric analysis of wings. Contributions to Zoology, 85 (1): 1-11.
  • Maeno, K. O., S. Nakamura & M. A. O. Babah, 2012. Sexing live adults of the three species of darkling beetle (Coleoptera: Tenebrionidae) and morphological characteristics. Annals of the Entomological Society of America, 105 (5): 726-730.
  • Matalin, A. V. & V. I. Chikatunov, 2016. The tiger beetles (Coleoptera: Carabidae: Cicindelinae) of Israel and adjacent lands. ZooKeys, 578: 115-160.
  • Meng, Y., G. Wang, D. Xiong, H. Liu, X. Liu, L. Wang & J. Zhang, 2018. Geometric morphometric analysis of the morphological variation among three Lenoks of genus Brachymystax in China. Pakistan Journal of Zoology, 50 (3): 885-895.
  • Minoli, I., M. Morando & L. J. Avila, 2016. Sexual dimorphism and interspecific head variation in the Liolaemus melanops complex (Squamata: Liolaemini) based on geometric morphometrics. Herpetological Journal, 26 (3): 227-237.
  • Mitteroecker, P. & P. Gunz, 2009. Advances in geometric morphometrics. Evolutionary Biology, 36 (2): 235-247.
  • Moneva, C. S. O., C. G. Demayo & M. A. J. Torres, 2012. Applications of geometric morphometric analysis in describing sexual dimorphism in shell shapes in Vivipara angularis Muller (Family Viviparidae). Animal Biology & Animal Husbandry, 4 (1): 14-19.
  • Moraes, S. S., L. W. Cardoso, K. L. Silva-Brandão & M. Duarte, 2016. Extreme sexual dimorphism and polymorphism in two species of the tiger moth genus Dysschema (Lepidoptera: Erebidae): association between males and females, sexual mimicry and melanism revealed by integrative taxonomy. Systematics and Biodiversity, 15 (3): 1-15.
  • Ober, K. A. & C. T. Connolly, 2015. Geometric morphometric and phylogenetic analyses of Arizona Sky Island populations of Scaphinotus petersi Roeschke (Coleoptera: Carabidae). Zoological Journal of the Linnean Society, 175 (1): 107-118.
  • Pearson, D. L., 1988. Biology of tiger beetles. Annual Review of Entomology, 33 (1): 123-147.
  • Pearson, D. L. & A. P. Vogler, 2001. Tiger Beetles. The Evolution, Ecology and Diversity of the Cicindelids. Cornell University Press, Ithaca and London, 333 pp.
  • Polihronakis, M., 2006. Morphometric analysis of intraspecific shape variation in male and female genitalia of Phyllophaga hirticula (Coleoptera: Scarabaeidae: Melolonthinae). Annals of the Entomological Society of America, 99 (1): 144-150.
  • Pretorius, E. & C. H. Scholtz, 2001. Geometric morphometrics and the analysis of higher taxa: a case study based on the metendosternite of the Scarabaeoidea (Coleoptera). Biological Journal of the Linnean Society, 74 (1): 35-50.
  • Punzalan, D. & D. J. Hosken, 2010. Sexual dimorphism: why the sexes are (and are not) different. Current Biology, 20 (22): R972-R973.
  • Rohlf, F. J., 2017. tpsDig, 2.17. (Web page: https://life.bio.sunysb.edu/morph) (Date accessed:15 May 2019).
  • Rohlf, F. J. & L. F. Marcus, 1993. A revolution morphometrics. Trends in Ecology & Evolution, 8 (4): 129-132.
  • Rohlf, F. J. & D. Slice, 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Biology, 39 (1): 40-59.
  • Satoh, A. & M. Hori, 2004. Interpopulation differences in the mandible size of the coastal tiger beetle Lophyridia angulata associated with different sympatric species. Entomological Science, 7 (3): 211-217.
  • Satoh, A., T. Uéda, Y. Enokido & M. Hori, 2003. Patterns of species assemblages and geographical distributions associated with mandible size differences in coastal tiger beetles in Japan. Population Ecology, 45 (2): 67-74.
  • Solis, M. F., J. J. Arroyo, K. A. Garcia, F. Zapico & E. Requieron, 2015. Geometric morphometric analysis on sexual dimorphism of guppy Poecilia reticulata in Lake Sebu, South Cotabato, Philippines. Research Journal of Animal, Veterinary and Fishery Sciences, 3 (1): 1-9.
  • Sukhodolskaya, R. A. & A. A. Saveliev, 2017. Impact of environmental factors on the body shape variation and sexual shape dimorphism in Carabus granulatus L. (Coleoptera: Carabidae). Zoological Systematics, 42 (1): 71-89.
  • Tamagnini, D., J. Stephenson, R. P. Brown & C. Meloro, 2018. Geometric morphometric analyses of sexual dimorphism and allometry in two sympatric snakes: Natrix helvetica (Natricidae) and Vipera berus (Viperidae). Zoology, 129: 25-34.
  • Tatsuta, H., K. H. Takahashi & Y. Sakamaki, 2018. Geometric morphometrics in entomology: basics and applications. Entomological Science, 21 (2): 164-184.
  • Teder, T., 2014. Sexual size dimorphism requires a corresponding sex difference in development time: a meta-analysis in insects. Functional Ecology, 28 (2): 479-486.
  • Torres, M. A. J., C. G. Demayo, A. T. Barrion, L. S. Sebastian & A. A. Barrion, 2010. Relative warp analysis of shape variability of the head and pronotum in selected populations of the rice black bug. Australian Journal of Basic and Applied Sciences, 4 (10): 4655-4670.
  • Uniyal, V. P. & V. Bhargav, 2007. Tiger Beetles: A Field Study in the Shivaliks of Himachal Pradesh. Wildlife Institute of Indiav Press, Dehradun, 80 pp.
  • Vesović, N., A. Ivanović & S. Ćurčić, 2019. Sexual size and shape dimorphism in two ground beetle taxa, Carabus (Procrustes) coriaceus cerisyi and C. (Morphocarabus) kollari praecellens (Coleoptera: Carabidae) - A geometric morphometric approach. Arthropod Structure & Development, 49: 1-9.
  • Virginio, F., P. O. Vidal & L. Suesdek, 2015. Wing sexual dimorphism of pathogen-vector culicids. Parasites & Vectors, 8 (159): 1-9.
  • Wyman, M. J., J. R. Stinchcombe & L. Rowe, 2013. A multivariate view of the evolution of sexual dimorphism. Journal of Evolutionary Biology, 26 (10): 2070-2080.
  • Young, O. P., 2015. Size relationships, early reproductive status, and mandibular wear in adult Tetracha (=Megacephala) carolina (L.) (Coleoptera: Carabidae: Cicindelinae). The Coleopterists Bulletin, 69 (1): 167-173.

Ayrıntılar

Birincil Dil İngilizce
Konular Fen
Bölüm Makaleler
Yazarlar

Aslı DOĞAN SARIKAYA (Sorumlu Yazar)
KIRŞEHİR AHİ EVRAN ÜNİVERSİTESİ
0000-0002-8739-0122
Türkiye


Yavuz KOÇAK
Ankara Hacı Bayram Veli Üniversitesi
0000-0003-3865-2103
Türkiye


Özkan SARIKAYA
KIRŞEHİR AHİ EVRAN ÜNİVERSİTESİ
0000-0002-1641-457X
Türkiye

Destekleyen Kurum Kırşehir Ahi Evran Üniversitesi Bilimsel Araştırma Projeleri
Proje Numarası FEF.A4.17.019
Yayımlanma Tarihi 31 Aralık 2020
Başvuru Tarihi 27 Ocak 2020
Kabul Tarihi 29 Haziran 2020
Yayınlandığı Sayı Yıl 2020, Cilt 44, Sayı 4

Kaynak Göster

Bibtex @araştırma makalesi { entoted680696, journal = {Turkish Journal of Entomology}, issn = {1010-6960}, eissn = {2536-491X}, address = {}, publisher = {Türkiye Entomoloji Derneği}, year = {2020}, volume = {44}, number = {4}, pages = {425 - 436}, doi = {10.16970/entoted.680696}, title = {Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics}, key = {cite}, author = {Doğan Sarıkaya, Aslı and Koçak, Yavuz and Sarıkaya, Özkan} }
APA Doğan Sarıkaya, A. , Koçak, Y. & Sarıkaya, Ö. (2020). Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics . Turkish Journal of Entomology , 44 (4) , 425-436 . DOI: 10.16970/entoted.680696
MLA Doğan Sarıkaya, A. , Koçak, Y. , Sarıkaya, Ö. "Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics" . Turkish Journal of Entomology 44 (2020 ): 425-436 <https://dergipark.org.tr/tr/pub/entoted/issue/56668/680696>
Chicago Doğan Sarıkaya, A. , Koçak, Y. , Sarıkaya, Ö. "Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics". Turkish Journal of Entomology 44 (2020 ): 425-436
RIS TY - JOUR T1 - Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics AU - Aslı Doğan Sarıkaya , Yavuz Koçak , Özkan Sarıkaya Y1 - 2020 PY - 2020 N1 - doi: 10.16970/entoted.680696 DO - 10.16970/entoted.680696 T2 - Turkish Journal of Entomology JF - Journal JO - JOR SP - 425 EP - 436 VL - 44 IS - 4 SN - 1010-6960-2536-491X M3 - doi: 10.16970/entoted.680696 UR - https://doi.org/10.16970/entoted.680696 Y2 - 2020 ER -
EndNote %0 Türkiye Entomoloji Dergisi Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics %A Aslı Doğan Sarıkaya , Yavuz Koçak , Özkan Sarıkaya %T Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics %D 2020 %J Turkish Journal of Entomology %P 1010-6960-2536-491X %V 44 %N 4 %R doi: 10.16970/entoted.680696 %U 10.16970/entoted.680696
ISNAD Doğan Sarıkaya, Aslı , Koçak, Yavuz , Sarıkaya, Özkan . "Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics". Turkish Journal of Entomology 44 / 4 (Aralık 2020): 425-436 . https://doi.org/10.16970/entoted.680696
AMA Doğan Sarıkaya A. , Koçak Y. , Sarıkaya Ö. Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics. TED. 2020; 44(4): 425-436.
Vancouver Doğan Sarıkaya A. , Koçak Y. , Sarıkaya Ö. Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics. Turkish Journal of Entomology. 2020; 44(4): 425-436.
IEEE A. Doğan Sarıkaya , Y. Koçak ve Ö. Sarıkaya , "Sexual dimorphism in the Anatolian endemic tiger beetle, Cephalota circumdata ssp. cappadocica Franzen, 1996 (Coleoptera: Carabidae: Cicindelinae): a study showing the effectiveness of geometric morphometrics", Turkish Journal of Entomology, c. 44, sayı. 4, ss. 425-436, Ara. 2020, doi:10.16970/entoted.680696