Göğüs kanseri, her yıl çokça ölüme sebebiyet veren en tehlikeli kanser türleri arasında yer almaktadır. Erken tanı durumları kanser tedavilerinde yapıcı rol oynamaktadır. Bu nedenle araştırmacılar, hastalara ve sağlıklı insanlara ait veriler üzerinde sınıflandırma ve kümeleme yöntemlerini kullanarak deneysel araştırmalar yapmaktadır. Gelişen teknoloji ile makine öğrenme destekli teşhis çalışmalarının yanı sıra derin öğrenme yöntemlerinin kullanımında kayda değer bir artış görülmektedir. Bu çalışmada, bir derin öğrenme metodu olan yığınlanmış özdevinimli kodlayıcılar (SAE) kullanılarak göğüs kanseri sınıflandırılmasında kullanılmak üzere yeni bir model tasarlanmıştır. Tasarlanan SAE ile performans karşılaştırması gerçekleştirmek üzere en yaygın kullanılan makine öğrenme yöntemlerinden destek vektör makineleri, k-en yakın komşuluk, naive bayes ve karar ağaçları metotları bu çalışmada ayrıca kullanılmıştır. Doğruluk oranı metriğinin yanı sıra, eğitim ve test aşamalarındaki geçen süre (zaman karmaşıklığı) deneysel çalışmalarda hesaplanmıştır. Deneysel çalışmalarda, veri ön işleme adımlarından normalizasyon süreci uygulanarak, sınıflandırma başarımına etkisi incelenmiştir. Deneysel sonuçlara göre doğruluk oranı kriteri baz alındığında %79,31 doğruluk oranı ile en başarılı sonuç veri ön işleme destekli SAE ile elde edilmiştir. Zaman karmaşıklığı metriğine göre KNN algoritması eğitim sürecinde en hızlı algoritma olurken SAE algoritması test sürecinde en hızlı olan algoritma olarak tespit edilmiştir.
Göğüs Kanseri Derin Öğrenme Yığınlanmış Özdevinimli Kodlayıcılar Veri Ön İşleme Makine Öğrenme Metotları
Birincil Dil | Türkçe |
---|---|
Konular | Mühendislik |
Bölüm | Bilgisayar |
Yazarlar | |
Yayımlanma Tarihi | 17 Ağustos 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 36 Sayı: 2 |
✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.