K karakteristiği sıfır olan bir cisim, u ve v cebirsel bağımsız değişkenler ve K〈u,v〉, K üzerinde rankı 2 olan serbest birleşmeli değişmeli olmayan bir cebir olsun. K〈u,v〉’deki her eleman, u ve v’nin değişmeli olmayan bir polinomu olarak yazılabilir. w=w(u,v)=log(e^u e^v) polinomunun açılımı düzgün bir kuvvet serisidir ve bu denklemin w için çözümü u ve v'nin iç içe geçen komütatörleri olarak ifade edilebilen Hausdorff serisi tarafından verilir. Ancak bu seri K〈u,v〉’de kapalı formda değildir. Bu serinin kapalı bir formunu elde ederken, K〈u,v〉’den başka cebirsel yapılar düşünülebilir ve bu cebirsel yapılar içinde, seri geliştirilebilir. Sonlu elemanlı sağ sıfır yarıgubunu ve reel sayılar cismi üzerinde bu yarıgrup tarafından gerilen A yarıgrup halkasını ele alalım. Bu çalışmada, A yarıgrup halkasında bu formülün kapalı bir formu verilmiştir.
Let K be a fileld of characteristic zero, u and v be algebraically independent variables and K〈u,v〉 be the free associative noncommutative algebra of rank 2 over K. Each element in K〈u,v〉 can be written as a noncommutative polynomial of u and v. The expression of the polynomial w=w(u,v)=log(e^u e^v) is a formal power series and a solution to this equation for w is given by the Hausdorff series expressed as nested commutators of u and v. However this series is not in its closed form in K〈u,v〉. Obtaining a closed form of this series, one may consider another algebraic structure other than K〈u,v〉 and evolute the series in it. We consider the right zero semigroup with finite elements, and the semigroup ring A spanned on this semigroup over the field of real numbers. In this paper, we provide a closed form of this formula in the semigroup ring A.
Birincil Dil | İngilizce |
---|---|
Konular | Mühendislik |
Bölüm | Makale |
Yazarlar | |
Yayımlanma Tarihi | 31 Aralık 2020 |
Yayımlandığı Sayı | Yıl 2020 Cilt: 36 Sayı: 3 |
✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.