Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2024, Cilt: 40 Sayı: 2, 429 - 449, 31.08.2024

Öz

Kaynakça

  • O'Sullivan, D. E., Brenner, D. R., Demers, P. A., Villeneuve, P. J., Friedenreich, C. M., King, W. D., & ComPARe Study Group. (2019). Indoor tanning and skin cancer in Canada: A meta-analysis and attributable burden estimation. Cancer epidemiology, 59, 1-7. Hylands P. Skin cancer: types, diagnosis and prevention. Heart Fail 2019;10. p. 00. Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445(7130),851-857.
  • Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., Sherry, R. M., ... & Rosenberg, S. A. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314(5796),126-129.
  • Nuzzo, C., Pino, M. S., & Cognetti, F. (2014). Systemic therapy in melanoma. Skin Cancer: A Practical Approach, 461-474. Kirkwood, J. M., Tarhini, A. A., Panelli, M. C., Moschos, S. J., Zarour, H. M., Butterfield, L. H., & Gogas, H. J. (2008). Next generation of immunotherapy for melanoma. Journal of Clinical Oncology, 26(20), 3445-3455.
  • Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature immunology, 3(11), 991-998. Fridman, W. H., Pagès, F., Sautès-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer, 12(4), 298-306.
  • Thomas, D. A., & Massagué, J. (2005). TGF- β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer cell, 8(5), 369-380.
  • Moutsopoulos, N. M., Wen, J., & Wahl, S. M. (2008). TGF- β and tumors-an ill-fated alliance. Current opinion in immunology, 20(2), 234-240.
  • Sun, H., Cao, D., Shen, K., Yang, J., Xiang, Y., Feng, F., ... & Song, L. (2018). Piver Type II vs. Type III hysterectomy in the treatment of early-stage cervical cancer: midterm follow-up results of a randomized controlled trial. Frontiers in Oncology, 8, 568.
  • Dougan M, Dranoff G, Dougan SK. Cancer immunotherapy: beyond checkpoint blockade. Annu Rev Cancer Biol. (2018) 3:55-75. doi: 10.1146/ annurev-cancerbio-030518-055552
  • Marelli, G., Howells, A., Lemoine, N. R., & Wang, Y. (2018). Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Frontiers in immunology, 9, 866.
  • Sabbar, Y., Yavuz, M., & Özköse, F. (2022). Infection Eradication Criterion in a General Epidemic Model with Logistic Growth, Quarantine Strategy, Media Intrusion, and Quadratic Perturbation. Mathematics, 10(22),4213. Weinberg, R. A. (2014). Coming full circle-from endless complexity to simplicity and back again. Cell, 157(1), 267-271. Kolch, W., Halasz, M., Granovskaya, M., & Kholodenko, B. N. (2015). The dynamic control of signal transduction networks in cancer cells. Nature Reviews Cancer, 15(9), 515-527. Eikenberry, S., Thalhauser, C., & Kuang, Y. (2009). Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma. PLoS computational biology, 5(4), e1000362.
  • Pennisi, M. (2012). A mathematical model of immune-system-melanoma competition. Computational and mathematical methods in medicine, 2012. Nikolov, S., & Nenov, M. (2019). Modelling vaccine quantity in mathematical models of melanoma treatment. Series on Biomechanics.
  • Shu, Y., Huang, J., Dong, Y., & Takeuchi, Y. (2020). Mathematical modeling and bifurcation analysis of pro- and anti-tumor macrophages. Applied Mathematical Modelling, 88, 758-773.
  • Özköse, F., ŞENEL, M. T., & Habbireeh, R. (2021). Fractional-order mathematical modelling of cancer cells- cancer stem cells-immune system interaction with chemotherapy. Mathematical Modelling and Numerical Simulation with Applications, 1(2), 67-83.
  • Lai, X., & Friedman, A. (2017). Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model. BMC Systems Biology, 11(1), 1-18.
  • Özköse, F., Yılmaz, S., Yavuz, M., Öztürk, İ., Şenel, M. T., Bağcı, B. Ş., ... & Önal, Ö. (2022). A fractional modeling of tumor-immune system interaction related to lung cancer with real data. The European Physical Journal Plus, 137, 1-28. Öztürk, I., & Özköse, F. (2020). Stability analysis of fractional order mathematical model of tumor-immune system interaction. Chaos, Solitons & Fractals, 133, 109614.
  • Carvalho, A. R., Pinto, C., & Baleanu, D. (2018). HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Advances in Difference Equations, 2018(1), 1-22.
  • Podlubny I . Fractional differential equations. Academic Press, New York; 1999.
  • Ghaziani, R. K., Alidousti, J., & Eshkaftaki, A. B. (2016). Stability and dynamics of a fractional order Leslie- Gower prey-predator model. Applied Mathematical Modelling, 40(3), 2075-2086.
  • Petras I . Fractional -order nonlinear systems: modeling, analysis and simulation. London, Beijing: Springer; 2011.
  • Baisad, K., & Moonchai, S. (2018). Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response. Advances in difference equations, 2018, 1-20. Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. (2007). Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applications, 325(1), 542-553.
  • Allen, L. J. An introduction to mathematical biology., 2007. ISBN, 10, 0-13.
  • Özköse, F., Yavuz, M., Şenel, M. T., & Habbireeh, R. (2022). Fractional order modelling of omicron SARS-CoV- 2 variant containing heart attack effect using real data from the United Kingdom. Chaos, Solitons & Fractals, 157,111954 .
  • Özköse, F. (2023). Modeling of psoriasis by considering drug influence: A mathematical approach with memory trace. Computers in Biology and Medicine, 107791.
  • Özköse, F. (2023). Long-Term Side Effects: A Mathematical Modeling of COVID-19 and Stroke with Real Data. Fractal and Fractional, 7(10),719.
  • Özköse, F., Habbireeh, R., & Şenel, M. T. (2023). A novel fractional order model of SARS-CoV-2 and Cholera disease with real data. Journal of Computational and Applied Mathematics, 423, 114969.
  • Diethelm, K., & Freed, A. D. (1998). The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen, 1999, 57-71.
  • Diethelm, K. (1997). An algorithm for the numerical solution of differential equations of fractional order. Electronic transactions on numerical analysis, 5(1), 1-6.
  • Garrappa, R. (2010). On linear stability of predictor-corrector algorithms for fractional differential equations. International Journal of Computer Mathematics, 87(10), 2281-2290.
  • Garrappa, R. (2018). Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics, 6(2), 16.
  • Li, C., & Tao, C. (2009). On the fractional Adams method. Computers & Mathematics with Applications, 58(8),1573-1588.
  • Rihan, F. A., & Velmurugan, G. (2020). Dynamics of fractional-order delay differential model for tumorimmune system. Chaos, Solitons & Fractals, 132, 109592.
  • R.H. Thomlinson, Measurement and management of carcinoma of the breast. Clin.Radiol. 33(5), 481–493 (1982).
  • Sarkar, R. R., & Banerjee, S. (2005). Cancer self remission and tumor stability–a stochastic approach. Mathematical Biosciences, 196(1), 65-81.

Mathematical Modeling of Skin Cancer with the Effect of Stress

Yıl 2024, Cilt: 40 Sayı: 2, 429 - 449, 31.08.2024

Öz

This paper introduces a mathematical model for skin cancer, formulated by fractional order differential equations
(FODE). Considering the importance of the stress factor, it has been included in the model and its effect on
tumor cells has been scrutinized. The study examines the local stability of equilibrium points and evaluates
the impact of fractional derivatives on the dynamic behavior of the system. In addition, numerical simulations
are conducted to analyze the influence of fractional order derivatives and distinct parameters on population
dynamics. The presentation of graphs based on various fractional orders and parameter values aids in the
visualization of the findings. The study further investigates the impact of stress on tumor cells. The outcomes
are expected to provide valuable insights to medical researchers in developing appropriate measures for screening
and treating skin cancer.

Kaynakça

  • O'Sullivan, D. E., Brenner, D. R., Demers, P. A., Villeneuve, P. J., Friedenreich, C. M., King, W. D., & ComPARe Study Group. (2019). Indoor tanning and skin cancer in Canada: A meta-analysis and attributable burden estimation. Cancer epidemiology, 59, 1-7. Hylands P. Skin cancer: types, diagnosis and prevention. Heart Fail 2019;10. p. 00. Gray-Schopfer, V., Wellbrock, C., & Marais, R. (2007). Melanoma biology and new targeted therapy. Nature, 445(7130),851-857.
  • Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., Sherry, R. M., ... & Rosenberg, S. A. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314(5796),126-129.
  • Nuzzo, C., Pino, M. S., & Cognetti, F. (2014). Systemic therapy in melanoma. Skin Cancer: A Practical Approach, 461-474. Kirkwood, J. M., Tarhini, A. A., Panelli, M. C., Moschos, S. J., Zarour, H. M., Butterfield, L. H., & Gogas, H. J. (2008). Next generation of immunotherapy for melanoma. Journal of Clinical Oncology, 26(20), 3445-3455.
  • Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J., & Schreiber, R. D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nature immunology, 3(11), 991-998. Fridman, W. H., Pagès, F., Sautès-Fridman, C., & Galon, J. (2012). The immune contexture in human tumours: impact on clinical outcome. Nature Reviews Cancer, 12(4), 298-306.
  • Thomas, D. A., & Massagué, J. (2005). TGF- β directly targets cytotoxic T cell functions during tumor evasion of immune surveillance. Cancer cell, 8(5), 369-380.
  • Moutsopoulos, N. M., Wen, J., & Wahl, S. M. (2008). TGF- β and tumors-an ill-fated alliance. Current opinion in immunology, 20(2), 234-240.
  • Sun, H., Cao, D., Shen, K., Yang, J., Xiang, Y., Feng, F., ... & Song, L. (2018). Piver Type II vs. Type III hysterectomy in the treatment of early-stage cervical cancer: midterm follow-up results of a randomized controlled trial. Frontiers in Oncology, 8, 568.
  • Dougan M, Dranoff G, Dougan SK. Cancer immunotherapy: beyond checkpoint blockade. Annu Rev Cancer Biol. (2018) 3:55-75. doi: 10.1146/ annurev-cancerbio-030518-055552
  • Marelli, G., Howells, A., Lemoine, N. R., & Wang, Y. (2018). Oncolytic viral therapy and the immune system: a double-edged sword against cancer. Frontiers in immunology, 9, 866.
  • Sabbar, Y., Yavuz, M., & Özköse, F. (2022). Infection Eradication Criterion in a General Epidemic Model with Logistic Growth, Quarantine Strategy, Media Intrusion, and Quadratic Perturbation. Mathematics, 10(22),4213. Weinberg, R. A. (2014). Coming full circle-from endless complexity to simplicity and back again. Cell, 157(1), 267-271. Kolch, W., Halasz, M., Granovskaya, M., & Kholodenko, B. N. (2015). The dynamic control of signal transduction networks in cancer cells. Nature Reviews Cancer, 15(9), 515-527. Eikenberry, S., Thalhauser, C., & Kuang, Y. (2009). Tumor-immune interaction, surgical treatment, and cancer recurrence in a mathematical model of melanoma. PLoS computational biology, 5(4), e1000362.
  • Pennisi, M. (2012). A mathematical model of immune-system-melanoma competition. Computational and mathematical methods in medicine, 2012. Nikolov, S., & Nenov, M. (2019). Modelling vaccine quantity in mathematical models of melanoma treatment. Series on Biomechanics.
  • Shu, Y., Huang, J., Dong, Y., & Takeuchi, Y. (2020). Mathematical modeling and bifurcation analysis of pro- and anti-tumor macrophages. Applied Mathematical Modelling, 88, 758-773.
  • Özköse, F., ŞENEL, M. T., & Habbireeh, R. (2021). Fractional-order mathematical modelling of cancer cells- cancer stem cells-immune system interaction with chemotherapy. Mathematical Modelling and Numerical Simulation with Applications, 1(2), 67-83.
  • Lai, X., & Friedman, A. (2017). Combination therapy for melanoma with BRAF/MEK inhibitor and immune checkpoint inhibitor: a mathematical model. BMC Systems Biology, 11(1), 1-18.
  • Özköse, F., Yılmaz, S., Yavuz, M., Öztürk, İ., Şenel, M. T., Bağcı, B. Ş., ... & Önal, Ö. (2022). A fractional modeling of tumor-immune system interaction related to lung cancer with real data. The European Physical Journal Plus, 137, 1-28. Öztürk, I., & Özköse, F. (2020). Stability analysis of fractional order mathematical model of tumor-immune system interaction. Chaos, Solitons & Fractals, 133, 109614.
  • Carvalho, A. R., Pinto, C., & Baleanu, D. (2018). HIV/HCV coinfection model: a fractional-order perspective for the effect of the HIV viral load. Advances in Difference Equations, 2018(1), 1-22.
  • Podlubny I . Fractional differential equations. Academic Press, New York; 1999.
  • Ghaziani, R. K., Alidousti, J., & Eshkaftaki, A. B. (2016). Stability and dynamics of a fractional order Leslie- Gower prey-predator model. Applied Mathematical Modelling, 40(3), 2075-2086.
  • Petras I . Fractional -order nonlinear systems: modeling, analysis and simulation. London, Beijing: Springer; 2011.
  • Baisad, K., & Moonchai, S. (2018). Analysis of stability and Hopf bifurcation in a fractional Gauss-type predator-prey model with Allee effect and Holling type-III functional response. Advances in difference equations, 2018, 1-20. Ahmed, E., El-Sayed, A. M. A., & El-Saka, H. A. (2007). Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models. Journal of Mathematical Analysis and Applications, 325(1), 542-553.
  • Allen, L. J. An introduction to mathematical biology., 2007. ISBN, 10, 0-13.
  • Özköse, F., Yavuz, M., Şenel, M. T., & Habbireeh, R. (2022). Fractional order modelling of omicron SARS-CoV- 2 variant containing heart attack effect using real data from the United Kingdom. Chaos, Solitons & Fractals, 157,111954 .
  • Özköse, F. (2023). Modeling of psoriasis by considering drug influence: A mathematical approach with memory trace. Computers in Biology and Medicine, 107791.
  • Özköse, F. (2023). Long-Term Side Effects: A Mathematical Modeling of COVID-19 and Stroke with Real Data. Fractal and Fractional, 7(10),719.
  • Özköse, F., Habbireeh, R., & Şenel, M. T. (2023). A novel fractional order model of SARS-CoV-2 and Cholera disease with real data. Journal of Computational and Applied Mathematics, 423, 114969.
  • Diethelm, K., & Freed, A. D. (1998). The FracPECE subroutine for the numerical solution of differential equations of fractional order. Forschung und wissenschaftliches Rechnen, 1999, 57-71.
  • Diethelm, K. (1997). An algorithm for the numerical solution of differential equations of fractional order. Electronic transactions on numerical analysis, 5(1), 1-6.
  • Garrappa, R. (2010). On linear stability of predictor-corrector algorithms for fractional differential equations. International Journal of Computer Mathematics, 87(10), 2281-2290.
  • Garrappa, R. (2018). Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics, 6(2), 16.
  • Li, C., & Tao, C. (2009). On the fractional Adams method. Computers & Mathematics with Applications, 58(8),1573-1588.
  • Rihan, F. A., & Velmurugan, G. (2020). Dynamics of fractional-order delay differential model for tumorimmune system. Chaos, Solitons & Fractals, 132, 109592.
  • R.H. Thomlinson, Measurement and management of carcinoma of the breast. Clin.Radiol. 33(5), 481–493 (1982).
  • Sarkar, R. R., & Banerjee, S. (2005). Cancer self remission and tumor stability–a stochastic approach. Mathematical Biosciences, 196(1), 65-81.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Adi Diferansiyel Denklemler, Fark Denklemleri ve Dinamik Sistemler
Bölüm Makale
Yazarlar

Şemsettin Tunca 0000-0002-2149-2724

M. Tamer Senel 0000-0003-1915-5697

Fatma Özköse

Yayımlanma Tarihi 31 Ağustos 2024
Gönderilme Tarihi 13 Aralık 2023
Kabul Tarihi 22 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 40 Sayı: 2

Kaynak Göster

APA Tunca, Ş., Senel, M. T., & Özköse, F. (2024). Mathematical Modeling of Skin Cancer with the Effect of Stress. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 40(2), 429-449.
AMA Tunca Ş, Senel MT, Özköse F. Mathematical Modeling of Skin Cancer with the Effect of Stress. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. Ağustos 2024;40(2):429-449.
Chicago Tunca, Şemsettin, M. Tamer Senel, ve Fatma Özköse. “Mathematical Modeling of Skin Cancer With the Effect of Stress”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40, sy. 2 (Ağustos 2024): 429-49.
EndNote Tunca Ş, Senel MT, Özköse F (01 Ağustos 2024) Mathematical Modeling of Skin Cancer with the Effect of Stress. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40 2 429–449.
IEEE Ş. Tunca, M. T. Senel, ve F. Özköse, “Mathematical Modeling of Skin Cancer with the Effect of Stress”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 2, ss. 429–449, 2024.
ISNAD Tunca, Şemsettin vd. “Mathematical Modeling of Skin Cancer With the Effect of Stress”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi 40/2 (Ağustos 2024), 429-449.
JAMA Tunca Ş, Senel MT, Özköse F. Mathematical Modeling of Skin Cancer with the Effect of Stress. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40:429–449.
MLA Tunca, Şemsettin vd. “Mathematical Modeling of Skin Cancer With the Effect of Stress”. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, c. 40, sy. 2, 2024, ss. 429-4.
Vancouver Tunca Ş, Senel MT, Özköse F. Mathematical Modeling of Skin Cancer with the Effect of Stress. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi. 2024;40(2):429-4.

✯ Etik kurul izni gerektiren, tüm bilim dallarında yapılan araştırmalar için etik kurul onayı alınmış olmalı, bu onay makalede belirtilmeli ve belgelendirilmelidir.
✯ Etik kurul izni gerektiren araştırmalarda, izinle ilgili bilgilere (kurul adı, tarih ve sayı no) yöntem bölümünde, ayrıca makalenin ilk/son sayfalarından birinde; olgu sunumlarında, bilgilendirilmiş gönüllü olur/onam formunun imzalatıldığına dair bilgiye makalede yer verilmelidir.
✯ Dergi web sayfasında, makalelerde Araştırma ve Yayın Etiğine uyulduğuna dair ifadeye yer verilmelidir.
✯ Dergi web sayfasında, hakem, yazar ve editör için ayrı başlıklar altında etik kurallarla ilgili bilgi verilmelidir.
✯ Dergide ve/veya web sayfasında, ulusal ve uluslararası standartlara atıf yaparak, dergide ve/veya web sayfasında etik ilkeler ayrı başlık altında belirtilmelidir. Örneğin; dergilere gönderilen bilimsel yazılarda, ICMJE (International Committee of Medical Journal Editors) tavsiyeleri ile COPE (Committee on Publication Ethics)’un Editör ve Yazarlar için Uluslararası Standartları dikkate alınmalıdır.
✯ Kullanılan fikir ve sanat eserleri için telif hakları düzenlemelerine riayet edilmesi gerekmektedir.