Derleme
BibTex RIS Kaynak Göster

New Generation Biomaterials Used in Delivery of Therapeutic Molecules

Yıl 2018, , 524 - 542, 30.12.2018
https://doi.org/10.18185/erzifbed.339405

Öz

Recently, with the discovery
of the RNA interference mechanism, transfection of various small nucleic acid
fragments (miRNA, siRNA, shRNA and plasmid DNA etc.) has been gradually gaining
importance and it is nowadays being used for silencing of the specific gene
regions causing many diseases. The barriers in delivery of therapeutic nucleic
acids, drug, DNA or protein vaccines, which are aimed to used in treatment of
many diseases, into tissue and cells restrict the developments in this field.
Consequently, polymer, inorganic and lipid-based biomaterials or composites
synthetized from aforementioned biomaterials are tailored through various
modification for the delivery of nucleic acids, drugs and DNA/protein vaccines.
Also, nanoparticles are able to be more functionalized by optimizing or
modifying them to reduce the toxic effects and to target cell being
transfected. In the development of new generation therapeutics; i) new nucleic acid types, ii) surpassing biological barriers
restricting transfection efficiency, iii)
synthesis of more functional nano-biomaterials are being intensively studied in vitro/in vivo conditions and promising developments are being
experienced. In this review article, different biomaterials are classified
depending on their structures, discussed in detail and reference studies
regarding therapeutic applications of these biomaterials are presented in the
light of recent developments in the literature.

Kaynakça

  • Adijanto, J., ve Naash, M. I. 2015. Nanoparticle-based technologies for retinal gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 95, 353–367.
  • Amjad, M. W., Kesharwani, P., Mohd Amin, M. C. I., ve Iyer, A. K. 2017. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Progress in Polymer Science, 64, 154–181.
  • Askarian, S., Abnous, K., Ayatollahi, S., Farzad, S. A., Oskuee, R. K., ve Ramezani, M. 2017. PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydrate Polymers, 157, 929–937.
  • Askarian, S., Abnous, K., Taghavi, S., Oskuee, R. K., ve Ramezani, M. 2015. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids and Surfaces B: Biointerfaces,136, 355–364.
  • Bishop, C. J., Kozielski, K. L., ve Green, J. J. 2015. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. Journal of Controlled Release, 219, 488–499.
  • Buchholz, C. J., Friedel, T., ve Büning, H. 2015. Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery. Trends in Biotechnology, 33(12), 777–790.
  • Caoduro, C., Hervouet, E., Girard-Thernier, C., Gharbi, T., Boulahdour, H., Delage-Mourroux, R., ve Pudlo, M. 2017. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties. Acta Biomaterialia, 49, 36–44.
  • Chabot, S., Teissié, J., ve Golzio, M. 2015. Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Advanced Drug Delivery Reviews, 81, 161–168.
  • Chatterjee, K., Sarkar, S., Jagajjanani Rao, K., ve Paria, S. 2014. Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science, 209, 8–39.
  • Chen, D., Dougherty, C. A., Zhu, K., ve Hong, H. 2015. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. Journal of Controlled Release, 210, 230–245.
  • Chen, J., Guo, Z., Tian, H., ve Chen, X. 2016. Production and clinical development of nanoparticles for gene delivery. Molecular Therapy - Methods & Clinical Development, 3(16023).
  • Chen, M., Zeng, Z., Qu, X., Tang, Y., Long, Q., ve Feng, X. 2015. Biocompatible anionic polyelectrolyte for improved liposome based gene transfection. International Journal of Pharmaceutics, 490(1), 173–179.
  • Chen, W., Meng, F., Cheng, R., Deng, C., Feijen, J., ve Zhong, Z. 2014. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 190, 398–414.
  • Chen, Y., Gao, D.-Y., ve Huang, L. 2015. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Advanced Drug Delivery Reviews, 81, 128–141.
  • Deng, Y., Wang, C. C., Choy, K. W., Du, Q., Chen, J., Wang, Q., Li, L., Chung, T. K., ve Tang, T. 2014. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene, 538(2), 217–227.
  • Dosio, F., Arpicco, S., Stella, B., ve Fattal, E. 2016. Hyaluronic acid for anticancer drug and nucleic acid delivery. Advanced Drug Delivery Reviews, 97, 204–236.
  • Du, X., Shi, B., Tang, Y., Dai, S., ve Qiao, S. Z. 2014. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 35(21), 5580–5590.
  • Duan, D. 2016. Systemic delivery of adeno-associated viral vectors. Current Opinion in Virology, 21, 16–25.
  • Endres, T., Zheng, M., Kılıç, A., Turowska, A., Beck-Broichsitter, M., Renz, H., Merkel, O. M., ve Kissel, T. 2014. Amphiphilic Biodegradable PEG-PCL-PEI Triblock Copolymers for FRET-Capable in Vitro and in Vivo Delivery of siRNA and Quantum Dots. Molecular Pharmaceutics, 11(4), 1273–1281.
  • Englert, C., Trützschler, A.K., Raasch, M., Bus, T., Borchers, P., Mosig, A. S., Traeger, A., ve Schubert, U. S. 2016. Crossing the blood-brain barrier: Glutathione-conjugated poly(ethylene imine) for gene delivery. Journal of Controlled Release, 241, 1–14.
  • Eroğlu, E., Tiwari, P. M., Waffo, A. B., Miller, M. E., Komal Vig, K., Dennis, V., ve Singh, S. 2013. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system. International Journal of Nanomedicine, 8, 1403.
  • Ezzati Nazhad Dolatabadi, J., ve Omidi, Y. 2016. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trends in Analytical Chemistry, 77, 100–108.
  • Fan, X., Zhao, Y., Xu, W., ve Li, L. 2016. Linear–dendritic block copolymer for drug and gene delivery. Materials Science and Engineering: C, 62, 943–959.
  • Fitzgerald, K. A., Malhotra, M., Gooding, M., Sallas, F., Evans, J. C., Darcy, R., ve O’Driscoll, C. M. 2016. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. International Journal of Pharmaceutics, 499(1), 131–145.
  • Fonseca, A. C., Gil, M. H., ve Simões, P. N. 2014. Biodegradable poly(ester amide)s – A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Progress in Polymer Science, 39(7), 1291–1311.
  • Gandhi, N. S., Tekade, R. K., ve Chougule, M. B. 2014. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. Journal of Controlled Release, 194, 238–256.
  • Gao, S., Tian, H., Guo, Y., Li, Y., Guo, Z., Zhu, X., ve Chen, X. 2015. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomaterialia, 25, 184–193.
  • Gao, S., Tian, H., Xing, Z., Zhang, D., Guo, Y., Guo, Z., Zhu, X., ve Chen, X. 2016. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. Journal of Controlled Release, 243, 357–369.
  • Germershaus, O., ve Nultsch, K. 2015. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian Journal of Pharmaceutical Sciences, 10(3), 159–175.
  • Gomes, C. P., Varela-Moreira, A., Leiro, V., Lopes, C. D. F., Moreno, P. M. D., Gomez-Lazaro, M., ve Pêgo, A. P. 2016. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance. Acta Biomaterialia, 46, 129–140.
  • Gulzar, A., Yang, P., He, F., Xu, J., Yang, D., Xu, L., ve Jan, M. O. 2017. Bioapplications of graphene constructed functional nanomaterials. Chemico-Biological Interactions, 262, 69–89.
  • Guo, J., O’Driscoll, C. M., Holmes, J. D., ve Rahme, K. 2016. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. International Journal of Pharmaceutics, 509(1), 16–27.
  • Gupta, A., Bahal, R., Gupta, M., Glazer, P. M., ve Saltzman, W. M. 2016. Nanotechnology for delivery of peptide nucleic acids (PNAs). Journal of Controlled Release, 240, 302–311.
  • Hollanda, L. M., Lobo, A. O., Lancellotti, M., Berni, E., Corat, E. J., ve Zanin, H. 2014. Graphene and carbon nanotube nanocomposite for gene transfection. Materials Science and Engineering: C, 39, 288–298.
  • Imani, R., Shao, W., Taherkhani, S., Emami, S. H., Prakash, S., ve Faghihi, S. 2016. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids and Surfaces B: Biointerfaces, 147, 315–325.
  • Ito, T., Koyama, Y., ve Otsuka, M. 2014. Preparation of Calcium Phosphate Nanocapsule Including Deoxyribonucleic Acid–Polyethyleneimine–Hyaluronic Acid Ternary Complex for Durable Gene Delivery. Journal of Pharmaceutical Sciences, 103(1), 179–184.
  • Jafri, M. A., Al-Qahtani, M. H., ve Shay, J. W. 2017. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Seminars in Cancer Biology, 44, 117–131.
  • Jiang, H.-L., Cui, P.-F., Xie, R.-L., & Cho, C.-S. 2014. Chapter Six – Chemical Modification of Chitosan for Efficient Gene Therapy. Advances in Food and Nutrition Research, 73, 83–101.
  • Kalaycioglu, G. D., ve Aydogan, N. 2016. Preparation and investigation of solid lipid nanoparticles for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 510, 77–86.
  • Kang, L., Gao, Z., Huang, W., Jin, M., ve Wang, Q. 2015. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharmaceutica Sinica B, 5(3), 169–175.
  • Kesharwani, P., Banerjee, S., Gupta, U., Mohd Amin, M. C. I., Padhye, S., Sarkar, F. H.,ve Iyer, A. K. 2015. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 18(10), 565–572.
  • Khan, M. A., Wu, V. M., Ghosh, S., ve Uskoković, V. 2016. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives. Journal of Colloid and Interface Science, 471, 48–58.
  • Kim, K., Chen, W. C. W., Heo, Y., ve Wang, Y. 2016. Polycations and their biomedical applications. Progress in Polymer Science, 60, 18–50.
  • Knudsen, K. B., Northeved, H., Kumar EK, P., Permin, A., Gjetting, T., Andresen, T. L., Larsen, S., Wegener, K. M., Lykkesfeldt, J., Loft, S., Moller, P., ve Roursgaard, M. 2015. In vivo toxicity of cationic micelles and liposomes. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 467–477.
  • Ku, S. H., Jo, S. D., Lee, Y. K., Kim, K., ve Kim, S. H. 2016. Chemical and structural modifications of RNAi therapeutics. Advanced Drug Delivery Reviews, 104, 16–28.
  • Kumar, V. B., Medhi, H., Yong, Z., ve Paik, P. 2016. Designing idiosyncratic hmPCL-siRNA nanoformulated capsules for silencing and cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 579–588.
  • Lai, W.-F. 2014. Cyclodextrins in non-viral gene delivery. Biomaterials, 35(1), 401–411.
  • Lam, J. K. W., Chow, M. Y. T., Zhang, Y., ve Leung, S. W. S. 2015. siRNA Versus miRNA as Therapeutics for Gene Silencing. Molecular Therapy - Nucleic Acids, 4(9). e252.
  • Lee, M. S., Lee, J. E., Byun, E., Kim, N. W., Lee, K., Lee, H., Sim, S. J., Lee, D. S., ve Jeong, J. H. 2014. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa–hyaluronic acid conjugate. Journal of Controlled Release, 192, 122–130.
  • Lee, S. H., Kang, Y. Y., Jang, H.-E., ve Mok, H. 2016. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Advanced Drug Delivery Reviews, 104, 78–92.
  • Leung, A. K. K., Tam, Y. Y. C., ve Cullis, P. R. 2014. Chapter Four – Lipid Nanoparticles for Short Interfering RNA Delivery. Advances in Genetics, 88, 71–110.
  • Li, Z., Zhang, L., ve Li, Q. 2015. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery. Colloids and Surfaces B: Biointerfaces, 135, 630–638.
  • Lin, J.-T., Zou, Y., Wang, C., Zhong, Y.-C., Zhao, Y., Zhu, H.-E., Wang, G.-H., Zhang, L. M., Zheng, X. B. 2014. Cationic micellar nanoparticles for DNA and doxorubicin co-delivery. Materials Science and Engineering: C, 44, 430–439.
  • Lin, Q., Yang, Y., Hu, Q., Guo, Z., Liu, T., Xu, J., Wu, J., Kirk, T. B., Ma, D., Xue, W. 2017. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly( l -lysine) dendron for sustained MMP-9 shRNA plasmid delivery. Acta Biomaterialia, 49, 456–471.
  • Lin, W. J., Lee, W.-C., ve Shieh, M.-J. 2017. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydrate Polymers, 155, 101–108.
  • Lin, X., Zhao, N., Yan, P., Hu, H., ve Xu, F.-J. 2015. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta Biomaterialia, 11, 381–392.
  • Liu, H., Li, Y., Mozhi, A., Zhang, L., Liu, Y., Xu, X., Xing, J., Liang, X., Ma, G., Yang, J., ve Zhang, X. 2014. SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment. Biomaterials, 35(24), 6519–6533.
  • Mai, K., Zhang, S., Liang, B., Gao, C., Du, W., ve Zhang, L.-M. 2015. Water soluble cationic dextran derivatives containing poly(amidoamine) dendrons for efficient gene delivery. Carbohydrate Polymers, 123, 237–245.
  • Martirosyan, A., Olesen, M. J., ve Howard, K. A. 2014. Chapter Eleven – Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics. Advances in Genetics, 88, 325–352.
  • McCallion, C., Burthem, J., Rees-Unwin, K., Golovanov, A., ve Pluen, A. 2016. Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 104, 235–250.
  • Megías, R., Arco, M., Ciriza, J., Burgo, L. S. del, Puras, G., López-Viota, M., Delgado, Á. V., Dobson, J. P., Arias, J. L., Pedraz, J. L. 2017. Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. International Journal of Pharmaceutics, 518(1), 270–280.
  • Merten, O.-W., ve Gaillet, B. 2016. Viral vectors for gene therapy and gene modification approaches. Biochemical Engineering Journal, 108, 98–115.
  • MIAO, X. 2017. Recent advances in understanding the role of miRNAs in exosomes and their therapeutic potential. Journal of Integrative Agriculture, 16(4), 753–761.
  • Mohammadi, M., Salmasi, Z., Hashemi, M., Mosaffa, F., Abnous, K., ve Ramezani, M. 2015. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. International Journal of Pharmaceutics, 485(1), 50–60.
  • Mokhtarzadeh, A., Alibakhshi, A., Hashemi, M., Hejazi, M., Hosseini, V., de la Guardia, M., ve Ramezani, M. 2017. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. Journal of Controlled Release, 245, 116–126.
  • More, H. T., Frezzo, J. A., Dai, J., Yamano, S., ve Montclare, J. K. 2014. Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials, 35(25), 7188–7193.
  • Ni, R., Zhou, J., Hossain, N., ve Chau, Y. 2016. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Advanced Drug Delivery Reviews, 106, 3–26.
  • Nia, A. H., Eshghi, H., Abnous, K., ve Ramezani, M. 2017. The intracellular delivery of plasmid DNA using cationic reducible carbon nanotube — Disulfide conjugates of polyethylenimine. European Journal of Pharmaceutical Sciences, 100, 176–186.
  • O’Bryan, S., Dong, S., Mathis, J. M., ve Alahari, S. K. 2017. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. European Journal of Cancer, 72, 1–11.
  • Ochrimenko, S., Vollrath, A., Tauhardt, L., Kempe, K., Schubert, S., Schubert, U. S., ve Fischer, D. 2014. Dextran-graft-linear poly(ethylene imine)s for gene delivery: Importance of the linking strategy. Carbohydrate Polymers, 113, 597–606.
  • Ohta, T., Hashida, Y., Yamashita, F., ve Hashida, M. 2016. Development of Novel Drug and Gene Delivery Carriers Composed of Single-Walled Carbon Nanotubes and Designed Peptides With PEGylation. Journal of Pharmaceutical Sciences, 105(9), 2815–2824.
  • Oliveira, A. V., Marcelo, A., Rosa da Costa, A. M., ve Silva, G. A. 2016. Evaluation of cystamine-modified hyaluronic acid/chitosan polyplex as retinal gene vector. Materials Science and Engineering: C, 58, 264–272.
  • Ozpolat, B., Sood, A. K., ve Lopez-Berestein, G. 2014. Liposomal siRNA nanocarriers for cancer therapy. Advanced Drug Delivery Reviews, 66, 110–116.
  • Pandey, A. P., ve Sawant, K. K. 2016. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Materials Science and Engineering: C, 68, 904–918.
  • Peng, L.-H., Niu, J., Zhang, C.-Z., Yu, W., Wu, J.-H., Shan, Y.-H., Wang, X.-R., Shen, Y.-Q., Mao, Z.-W., Liang, W.-Q., ve Gao, J.-Q. 2014. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials, 35(21), 5605–5618.
  • Perche, F., Yi, Y., Hespel, L., Mi, P., Dirisala, A., Cabral, H., Miyata, K., Kataoka, K. 2016. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity. Biomaterials, 90, 62–71.
  • Rea, I., Martucci, N. M., De Stefano, L., Ruggiero, I., Terracciano, M., Dardano, P., Migliaccio, N., Arcari, P., Tate, R., Rendina, I., Lamberti, A. 2014. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(12), 3393–3403.
  • Sharma, S., Verma, A., Teja, B. V., Pandey, G., Mittapelly, N., Trivedi, R., ve Mishra, P. R. 2015. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids and Surfaces B: Biointerfaces, 133, 120–139.
  • Shi, B., Zhang, H., Bi, J., ve Dai, S. 2014. Endosomal pH responsive polymers for efficient cancer targeted gene therapy. Colloids and Surfaces B: Biointerfaces, 119, 55–65.
  • Shi, J., Xu, Y., Xu, X., Zhu, X., Pridgen, E., Wu, J., Votruba, A. R., Swami, A., Zetter, B. R., Farokhzad, O. C. 2014. Hybrid lipid–polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine: Nanotechnology, Biology and Medicine, 10(5), 897-900.
  • Siu, K. S., Chen, D., Zheng, X., Zhang, X., Johnston, N., Liu, Y., Yuan, K., Karopatnick, J., Gillies, E. R., Min, W. P. 2014. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 35(10), 3435–3442.
  • Suk, J. S., Xu, Q., Kim, N., Hanes, J., ve Ensign, L. M. 2016. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28–51.
  • Sun, N., Liu, Z., Huang, W., Tian, A., ve Hu, S. 2014. The research of nanoparticles as gene vector for tumor gene therapy. Critical Reviews in Oncology/Hematology, 89(3), 352–357.
  • Tang, S., Huang, Z., Zhang, H., Wang, Y., Hu, Q., ve Jiang, H. 2014. Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery. Carbohydrate Polymers, 101, 104–112.
  • Tang, Z., He, C., Tian, H., Ding, J., Hsiao, B. S., Chu, B., ve Chen, X. 2016. Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 60, 86–128.
  • Thuy, L. T., Mallick, S., ve Choi, J. S. 2015. Polyamidoamine (PAMAM) dendrimers modified with short oligopeptides for early endosomal escape and enhanced gene delivery. International Journal of Pharmaceutics, 492(1), 233–243.
  • Tiwari, P. M., Eroglu, E., Bawage, S. S., Vig, K., Miller, M. E., Pillai, S., Dennis, V. A., ve Singh, S. R. 2014. Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus. Biomaterials, 35(35), 9484–9494.
  • Urie, R., ve Rege, K. 2015. Nanoscale inorganic scaffolds as therapeutics and delivery vehicles. Current Opinion in Chemical Engineering, 7, 120–128.
  • Vago, R., Collico, V., Zuppone, S., Prosperi, D., ve Colombo, M. 2016. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacological Research, 111, 619–641.
  • Vardharajula, S., Ali, S. Z., Tiwari, P. M., Eroğlu, E., Vig, K., Dennis, V. A., ve Singh, S. R. 2012. Functionalized carbon nanotubes: biomedical applications. International journal of nanomedicine, 7, 5361–74.
  • Videira, M., Arranja, A., Rafael, D., ve Gaspar, R. 2014. Preclinical development of siRNA therapeutics: Towards the match between fundamental science and engineered systems. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 689–702.
  • Wan, Y., Wu, C., Zuo, G., Xiong, G., Jin, J., Guo, R., Wang, Z., ve Luo, H. 2015. Controlled template synthesis of lamellar hydroxyapatite nanoplates as a potential carrier for gene delivery. Materials Chemistry and Physics, 156, 238–246.
  • Wang, K., Kievit, F. M., ve Zhang, M. 2016. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacological Research, 114, 56–66.
  • Wang, Y. 2014. Chapter Five – Composite Nanoparticles for Gene Delivery. Advances in Genetics, 88, 111–137.
  • Xiong, G., Wan, Y., Zuo, G., Ren, K., ve Luo, H. 2015. Self-assembled magnetic lamellar hydroxyapatite as an efficient nano-vector for gene delivery. Current Applied Physics, 15(7), 811–818.
  • Yang, J., Liu, H., ve Zhang, X. 2014. Design, preparation and application of nucleic acid delivery carriers. Biotechnology Advances, 32(4), 804–817.
  • Yang, Y., ve Yu, C. 2016. Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 317–332.
  • Zanin, H., Hollanda, L. M., Ceragioli, H. J., Ferreira, M. S., Machado, D., Lancellotti, M., Catharino, R. R., Baranauskas, V., ve Lobo, A. O. 2014. Carbon nanoparticles for gene transfection in eukaryotic cell lines. Materials Science and Engineering: C, 39, 359–370.
  • Zhang, J., Li, X., ve Huang, L. 2014. Non-viral nanocarriers for siRNA delivery in breast cancer. Journal of Controlled Release, 190, 440–450.
  • Zhang, J., Sun, X., Shao, R., Liang, W., Gao, J., ve Chen, J. 2015. Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery. Journal of Drug Delivery Science and Technology, 30, 1–6.
  • Zhang, R., Zheng, N., Song, Z., Yin, L., ve Cheng, J. 2014. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials, 35(10), 3443–3454.
  • Zou, L., Song, X., Yi, T., Li, S., Deng, H., Chen, X., Li, Z., Bai, Y., Zhong, Q., Wei, Y., ve Zhao, X. 2013. Administration of PLGA nanoparticles carrying shRNA against focal adhesion kinase and CD44 results in enhanced antitumor effects against ovarian cancer. Cancer Gene Therapy, 20(4), 242–250.

Terapötik Moleküllerin Aktarımında Kullanılan Yeni Nesil Biyomalzemeler

Yıl 2018, , 524 - 542, 30.12.2018
https://doi.org/10.18185/erzifbed.339405

Öz



Son yıllarda, RNA interferans mekanizmasının
keşfedilmesiyle birlikte çeşitli ufak nükleik asit parçacıklarının (miRNA,
siRNA, shRNA ve plazmid DNA vb.) transfeksiyonu giderek önem kazanmakta ve
günümüzde birçok hastalığa sebep olan spesifik gen bölgelerinin susturulması
için kullanılmaktadır. Birçok hastalığın tedavisinde kullanılması hedeflenen
terapötik nükleik asitlerin, ilaç veya aşıların doku ve hücrelere aktarılmasındaki
engeller bu alandaki gelişmeleri sınırlamaktadır. Bu doğrultuda, polimer,
inorganik ve lipit bazlı çeşitli biyomalzemeler veya bu biyomalzemelerden
oluşan kompozitler çeşitli modifikasyonlara uğratılarak terapötik nükleik
asit, ilaç veya DNA/protein aşısı aktarımı için uygun hale getirilmektedir.
Aynı zamanda, toksik etkiyi azaltmak ve aktarımın yapılacağı hücreyi
hedeflemek için çeşitli optimizasyon ve modifikasyonlar yapılarak
nanoparçacıklar daha fonksiyonel hale getirilebilmektedirler. Yeni nesil
terapötiklerin geliştirilmesinde; i)
yeni nükleik asit tipleri, ii)
transfeksiyon verimini sınırlayan biyolojik bariyerlerin aşılması, iii) daha fonksiyonel
nano-biyomalzemelerin sentezi in vitro/in vivo ortamlarda yoğun bir şekilde
araştırılmakta ve umut vaat eden gelişmeler yaşanmaktadır. Bu derleme
makalesinde, literatürdeki güncel gelişmeler göz önünde tutularak farklı
biyomalzemeler yapılarına göre sınıflandırılmış, ayrıntılı bir şekilde
incelenmiş ve bu biyomalzemelerin terapötik uygulamalarda kullanımıyla ilgili
örnek çalışmalara yer verilmiştir.


Kaynakça

  • Adijanto, J., ve Naash, M. I. 2015. Nanoparticle-based technologies for retinal gene therapy. European Journal of Pharmaceutics and Biopharmaceutics, 95, 353–367.
  • Amjad, M. W., Kesharwani, P., Mohd Amin, M. C. I., ve Iyer, A. K. 2017. Recent advances in the design, development, and targeting mechanisms of polymeric micelles for delivery of siRNA in cancer therapy. Progress in Polymer Science, 64, 154–181.
  • Askarian, S., Abnous, K., Ayatollahi, S., Farzad, S. A., Oskuee, R. K., ve Ramezani, M. 2017. PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydrate Polymers, 157, 929–937.
  • Askarian, S., Abnous, K., Taghavi, S., Oskuee, R. K., ve Ramezani, M. 2015. Cellular delivery of shRNA using aptamer-conjugated PLL-alkyl-PEI nanoparticles. Colloids and Surfaces B: Biointerfaces,136, 355–364.
  • Bishop, C. J., Kozielski, K. L., ve Green, J. J. 2015. Exploring the role of polymer structure on intracellular nucleic acid delivery via polymeric nanoparticles. Journal of Controlled Release, 219, 488–499.
  • Buchholz, C. J., Friedel, T., ve Büning, H. 2015. Surface-Engineered Viral Vectors for Selective and Cell Type-Specific Gene Delivery. Trends in Biotechnology, 33(12), 777–790.
  • Caoduro, C., Hervouet, E., Girard-Thernier, C., Gharbi, T., Boulahdour, H., Delage-Mourroux, R., ve Pudlo, M. 2017. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties. Acta Biomaterialia, 49, 36–44.
  • Chabot, S., Teissié, J., ve Golzio, M. 2015. Targeted electro-delivery of oligonucleotides for RNA interference: siRNA and antimiR. Advanced Drug Delivery Reviews, 81, 161–168.
  • Chatterjee, K., Sarkar, S., Jagajjanani Rao, K., ve Paria, S. 2014. Core/shell nanoparticles in biomedical applications. Advances in Colloid and Interface Science, 209, 8–39.
  • Chen, D., Dougherty, C. A., Zhu, K., ve Hong, H. 2015. Theranostic applications of carbon nanomaterials in cancer: Focus on imaging and cargo delivery. Journal of Controlled Release, 210, 230–245.
  • Chen, J., Guo, Z., Tian, H., ve Chen, X. 2016. Production and clinical development of nanoparticles for gene delivery. Molecular Therapy - Methods & Clinical Development, 3(16023).
  • Chen, M., Zeng, Z., Qu, X., Tang, Y., Long, Q., ve Feng, X. 2015. Biocompatible anionic polyelectrolyte for improved liposome based gene transfection. International Journal of Pharmaceutics, 490(1), 173–179.
  • Chen, W., Meng, F., Cheng, R., Deng, C., Feijen, J., ve Zhong, Z. 2014. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. Journal of Controlled Release, 190, 398–414.
  • Chen, Y., Gao, D.-Y., ve Huang, L. 2015. In vivo delivery of miRNAs for cancer therapy: Challenges and strategies. Advanced Drug Delivery Reviews, 81, 128–141.
  • Deng, Y., Wang, C. C., Choy, K. W., Du, Q., Chen, J., Wang, Q., Li, L., Chung, T. K., ve Tang, T. 2014. Therapeutic potentials of gene silencing by RNA interference: Principles, challenges, and new strategies. Gene, 538(2), 217–227.
  • Dosio, F., Arpicco, S., Stella, B., ve Fattal, E. 2016. Hyaluronic acid for anticancer drug and nucleic acid delivery. Advanced Drug Delivery Reviews, 97, 204–236.
  • Du, X., Shi, B., Tang, Y., Dai, S., ve Qiao, S. Z. 2014. Label-free dendrimer-like silica nanohybrids for traceable and controlled gene delivery. Biomaterials, 35(21), 5580–5590.
  • Duan, D. 2016. Systemic delivery of adeno-associated viral vectors. Current Opinion in Virology, 21, 16–25.
  • Endres, T., Zheng, M., Kılıç, A., Turowska, A., Beck-Broichsitter, M., Renz, H., Merkel, O. M., ve Kissel, T. 2014. Amphiphilic Biodegradable PEG-PCL-PEI Triblock Copolymers for FRET-Capable in Vitro and in Vivo Delivery of siRNA and Quantum Dots. Molecular Pharmaceutics, 11(4), 1273–1281.
  • Englert, C., Trützschler, A.K., Raasch, M., Bus, T., Borchers, P., Mosig, A. S., Traeger, A., ve Schubert, U. S. 2016. Crossing the blood-brain barrier: Glutathione-conjugated poly(ethylene imine) for gene delivery. Journal of Controlled Release, 241, 1–14.
  • Eroğlu, E., Tiwari, P. M., Waffo, A. B., Miller, M. E., Komal Vig, K., Dennis, V., ve Singh, S. 2013. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system. International Journal of Nanomedicine, 8, 1403.
  • Ezzati Nazhad Dolatabadi, J., ve Omidi, Y. 2016. Solid lipid-based nanocarriers as efficient targeted drug and gene delivery systems. TrAC Trends in Analytical Chemistry, 77, 100–108.
  • Fan, X., Zhao, Y., Xu, W., ve Li, L. 2016. Linear–dendritic block copolymer for drug and gene delivery. Materials Science and Engineering: C, 62, 943–959.
  • Fitzgerald, K. A., Malhotra, M., Gooding, M., Sallas, F., Evans, J. C., Darcy, R., ve O’Driscoll, C. M. 2016. A novel, anisamide-targeted cyclodextrin nanoformulation for siRNA delivery to prostate cancer cells expressing the sigma-1 receptor. International Journal of Pharmaceutics, 499(1), 131–145.
  • Fonseca, A. C., Gil, M. H., ve Simões, P. N. 2014. Biodegradable poly(ester amide)s – A remarkable opportunity for the biomedical area: Review on the synthesis, characterization and applications. Progress in Polymer Science, 39(7), 1291–1311.
  • Gandhi, N. S., Tekade, R. K., ve Chougule, M. B. 2014. Nanocarrier mediated delivery of siRNA/miRNA in combination with chemotherapeutic agents for cancer therapy: Current progress and advances. Journal of Controlled Release, 194, 238–256.
  • Gao, S., Tian, H., Guo, Y., Li, Y., Guo, Z., Zhu, X., ve Chen, X. 2015. miRNA oligonucleotide and sponge for miRNA-21 inhibition mediated by PEI-PLL in breast cancer therapy. Acta Biomaterialia, 25, 184–193.
  • Gao, S., Tian, H., Xing, Z., Zhang, D., Guo, Y., Guo, Z., Zhu, X., ve Chen, X. 2016. A non-viral suicide gene delivery system traversing the blood brain barrier for non-invasive glioma targeting treatment. Journal of Controlled Release, 243, 357–369.
  • Germershaus, O., ve Nultsch, K. 2015. Localized, non-viral delivery of nucleic acids: Opportunities, challenges and current strategies. Asian Journal of Pharmaceutical Sciences, 10(3), 159–175.
  • Gomes, C. P., Varela-Moreira, A., Leiro, V., Lopes, C. D. F., Moreno, P. M. D., Gomez-Lazaro, M., ve Pêgo, A. P. 2016. A high-throughput bioimaging study to assess the impact of chitosan-based nanoparticle degradation on DNA delivery performance. Acta Biomaterialia, 46, 129–140.
  • Gulzar, A., Yang, P., He, F., Xu, J., Yang, D., Xu, L., ve Jan, M. O. 2017. Bioapplications of graphene constructed functional nanomaterials. Chemico-Biological Interactions, 262, 69–89.
  • Guo, J., O’Driscoll, C. M., Holmes, J. D., ve Rahme, K. 2016. Bioconjugated gold nanoparticles enhance cellular uptake: A proof of concept study for siRNA delivery in prostate cancer cells. International Journal of Pharmaceutics, 509(1), 16–27.
  • Gupta, A., Bahal, R., Gupta, M., Glazer, P. M., ve Saltzman, W. M. 2016. Nanotechnology for delivery of peptide nucleic acids (PNAs). Journal of Controlled Release, 240, 302–311.
  • Hollanda, L. M., Lobo, A. O., Lancellotti, M., Berni, E., Corat, E. J., ve Zanin, H. 2014. Graphene and carbon nanotube nanocomposite for gene transfection. Materials Science and Engineering: C, 39, 288–298.
  • Imani, R., Shao, W., Taherkhani, S., Emami, S. H., Prakash, S., ve Faghihi, S. 2016. Dual-functionalized graphene oxide for enhanced siRNA delivery to breast cancer cells. Colloids and Surfaces B: Biointerfaces, 147, 315–325.
  • Ito, T., Koyama, Y., ve Otsuka, M. 2014. Preparation of Calcium Phosphate Nanocapsule Including Deoxyribonucleic Acid–Polyethyleneimine–Hyaluronic Acid Ternary Complex for Durable Gene Delivery. Journal of Pharmaceutical Sciences, 103(1), 179–184.
  • Jafri, M. A., Al-Qahtani, M. H., ve Shay, J. W. 2017. Role of miRNAs in human cancer metastasis: Implications for therapeutic intervention. Seminars in Cancer Biology, 44, 117–131.
  • Jiang, H.-L., Cui, P.-F., Xie, R.-L., & Cho, C.-S. 2014. Chapter Six – Chemical Modification of Chitosan for Efficient Gene Therapy. Advances in Food and Nutrition Research, 73, 83–101.
  • Kalaycioglu, G. D., ve Aydogan, N. 2016. Preparation and investigation of solid lipid nanoparticles for drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 510, 77–86.
  • Kang, L., Gao, Z., Huang, W., Jin, M., ve Wang, Q. 2015. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharmaceutica Sinica B, 5(3), 169–175.
  • Kesharwani, P., Banerjee, S., Gupta, U., Mohd Amin, M. C. I., Padhye, S., Sarkar, F. H.,ve Iyer, A. K. 2015. PAMAM dendrimers as promising nanocarriers for RNAi therapeutics. Materials Today, 18(10), 565–572.
  • Khan, M. A., Wu, V. M., Ghosh, S., ve Uskoković, V. 2016. Gene delivery using calcium phosphate nanoparticles: Optimization of the transfection process and the effects of citrate and poly(l-lysine) as additives. Journal of Colloid and Interface Science, 471, 48–58.
  • Kim, K., Chen, W. C. W., Heo, Y., ve Wang, Y. 2016. Polycations and their biomedical applications. Progress in Polymer Science, 60, 18–50.
  • Knudsen, K. B., Northeved, H., Kumar EK, P., Permin, A., Gjetting, T., Andresen, T. L., Larsen, S., Wegener, K. M., Lykkesfeldt, J., Loft, S., Moller, P., ve Roursgaard, M. 2015. In vivo toxicity of cationic micelles and liposomes. Nanomedicine: Nanotechnology, Biology and Medicine, 11(2), 467–477.
  • Ku, S. H., Jo, S. D., Lee, Y. K., Kim, K., ve Kim, S. H. 2016. Chemical and structural modifications of RNAi therapeutics. Advanced Drug Delivery Reviews, 104, 16–28.
  • Kumar, V. B., Medhi, H., Yong, Z., ve Paik, P. 2016. Designing idiosyncratic hmPCL-siRNA nanoformulated capsules for silencing and cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(3), 579–588.
  • Lai, W.-F. 2014. Cyclodextrins in non-viral gene delivery. Biomaterials, 35(1), 401–411.
  • Lam, J. K. W., Chow, M. Y. T., Zhang, Y., ve Leung, S. W. S. 2015. siRNA Versus miRNA as Therapeutics for Gene Silencing. Molecular Therapy - Nucleic Acids, 4(9). e252.
  • Lee, M. S., Lee, J. E., Byun, E., Kim, N. W., Lee, K., Lee, H., Sim, S. J., Lee, D. S., ve Jeong, J. H. 2014. Target-specific delivery of siRNA by stabilized calcium phosphate nanoparticles using dopa–hyaluronic acid conjugate. Journal of Controlled Release, 192, 122–130.
  • Lee, S. H., Kang, Y. Y., Jang, H.-E., ve Mok, H. 2016. Current preclinical small interfering RNA (siRNA)-based conjugate systems for RNA therapeutics. Advanced Drug Delivery Reviews, 104, 78–92.
  • Leung, A. K. K., Tam, Y. Y. C., ve Cullis, P. R. 2014. Chapter Four – Lipid Nanoparticles for Short Interfering RNA Delivery. Advances in Genetics, 88, 71–110.
  • Li, Z., Zhang, L., ve Li, Q. 2015. Induction of apoptosis in cancer cells through N-acetyl-l-leucine-modified polyethylenimine-mediated p53 gene delivery. Colloids and Surfaces B: Biointerfaces, 135, 630–638.
  • Lin, J.-T., Zou, Y., Wang, C., Zhong, Y.-C., Zhao, Y., Zhu, H.-E., Wang, G.-H., Zhang, L. M., Zheng, X. B. 2014. Cationic micellar nanoparticles for DNA and doxorubicin co-delivery. Materials Science and Engineering: C, 44, 430–439.
  • Lin, Q., Yang, Y., Hu, Q., Guo, Z., Liu, T., Xu, J., Wu, J., Kirk, T. B., Ma, D., Xue, W. 2017. Injectable supramolecular hydrogel formed from α-cyclodextrin and PEGylated arginine-functionalized poly( l -lysine) dendron for sustained MMP-9 shRNA plasmid delivery. Acta Biomaterialia, 49, 456–471.
  • Lin, W. J., Lee, W.-C., ve Shieh, M.-J. 2017. Hyaluronic acid conjugated micelles possessing CD44 targeting potential for gene delivery. Carbohydrate Polymers, 155, 101–108.
  • Lin, X., Zhao, N., Yan, P., Hu, H., ve Xu, F.-J. 2015. The shape and size effects of polycation functionalized silica nanoparticles on gene transfection. Acta Biomaterialia, 11, 381–392.
  • Liu, H., Li, Y., Mozhi, A., Zhang, L., Liu, Y., Xu, X., Xing, J., Liang, X., Ma, G., Yang, J., ve Zhang, X. 2014. SiRNA-phospholipid conjugates for gene and drug delivery in cancer treatment. Biomaterials, 35(24), 6519–6533.
  • Mai, K., Zhang, S., Liang, B., Gao, C., Du, W., ve Zhang, L.-M. 2015. Water soluble cationic dextran derivatives containing poly(amidoamine) dendrons for efficient gene delivery. Carbohydrate Polymers, 123, 237–245.
  • Martirosyan, A., Olesen, M. J., ve Howard, K. A. 2014. Chapter Eleven – Chitosan-Based Nanoparticles for Mucosal Delivery of RNAi Therapeutics. Advances in Genetics, 88, 325–352.
  • McCallion, C., Burthem, J., Rees-Unwin, K., Golovanov, A., ve Pluen, A. 2016. Graphene in therapeutics delivery: Problems, solutions and future opportunities. European Journal of Pharmaceutics and Biopharmaceutics, 104, 235–250.
  • Megías, R., Arco, M., Ciriza, J., Burgo, L. S. del, Puras, G., López-Viota, M., Delgado, Á. V., Dobson, J. P., Arias, J. L., Pedraz, J. L. 2017. Design and characterization of a magnetite/PEI multifunctional nanohybrid as non-viral vector and cell isolation system. International Journal of Pharmaceutics, 518(1), 270–280.
  • Merten, O.-W., ve Gaillet, B. 2016. Viral vectors for gene therapy and gene modification approaches. Biochemical Engineering Journal, 108, 98–115.
  • MIAO, X. 2017. Recent advances in understanding the role of miRNAs in exosomes and their therapeutic potential. Journal of Integrative Agriculture, 16(4), 753–761.
  • Mohammadi, M., Salmasi, Z., Hashemi, M., Mosaffa, F., Abnous, K., ve Ramezani, M. 2015. Single-walled carbon nanotubes functionalized with aptamer and piperazine–polyethylenimine derivative for targeted siRNA delivery into breast cancer cells. International Journal of Pharmaceutics, 485(1), 50–60.
  • Mokhtarzadeh, A., Alibakhshi, A., Hashemi, M., Hejazi, M., Hosseini, V., de la Guardia, M., ve Ramezani, M. 2017. Biodegradable nano-polymers as delivery vehicles for therapeutic small non-coding ribonucleic acids. Journal of Controlled Release, 245, 116–126.
  • More, H. T., Frezzo, J. A., Dai, J., Yamano, S., ve Montclare, J. K. 2014. Gene delivery from supercharged coiled-coil protein and cationic lipid hybrid complex. Biomaterials, 35(25), 7188–7193.
  • Ni, R., Zhou, J., Hossain, N., ve Chau, Y. 2016. Virus-inspired nucleic acid delivery system: Linking virus and viral mimicry. Advanced Drug Delivery Reviews, 106, 3–26.
  • Nia, A. H., Eshghi, H., Abnous, K., ve Ramezani, M. 2017. The intracellular delivery of plasmid DNA using cationic reducible carbon nanotube — Disulfide conjugates of polyethylenimine. European Journal of Pharmaceutical Sciences, 100, 176–186.
  • O’Bryan, S., Dong, S., Mathis, J. M., ve Alahari, S. K. 2017. The roles of oncogenic miRNAs and their therapeutic importance in breast cancer. European Journal of Cancer, 72, 1–11.
  • Ochrimenko, S., Vollrath, A., Tauhardt, L., Kempe, K., Schubert, S., Schubert, U. S., ve Fischer, D. 2014. Dextran-graft-linear poly(ethylene imine)s for gene delivery: Importance of the linking strategy. Carbohydrate Polymers, 113, 597–606.
  • Ohta, T., Hashida, Y., Yamashita, F., ve Hashida, M. 2016. Development of Novel Drug and Gene Delivery Carriers Composed of Single-Walled Carbon Nanotubes and Designed Peptides With PEGylation. Journal of Pharmaceutical Sciences, 105(9), 2815–2824.
  • Oliveira, A. V., Marcelo, A., Rosa da Costa, A. M., ve Silva, G. A. 2016. Evaluation of cystamine-modified hyaluronic acid/chitosan polyplex as retinal gene vector. Materials Science and Engineering: C, 58, 264–272.
  • Ozpolat, B., Sood, A. K., ve Lopez-Berestein, G. 2014. Liposomal siRNA nanocarriers for cancer therapy. Advanced Drug Delivery Reviews, 66, 110–116.
  • Pandey, A. P., ve Sawant, K. K. 2016. Polyethylenimine: A versatile, multifunctional non-viral vector for nucleic acid delivery. Materials Science and Engineering: C, 68, 904–918.
  • Peng, L.-H., Niu, J., Zhang, C.-Z., Yu, W., Wu, J.-H., Shan, Y.-H., Wang, X.-R., Shen, Y.-Q., Mao, Z.-W., Liang, W.-Q., ve Gao, J.-Q. 2014. TAT conjugated cationic noble metal nanoparticles for gene delivery to epidermal stem cells. Biomaterials, 35(21), 5605–5618.
  • Perche, F., Yi, Y., Hespel, L., Mi, P., Dirisala, A., Cabral, H., Miyata, K., Kataoka, K. 2016. Hydroxychloroquine-conjugated gold nanoparticles for improved siRNA activity. Biomaterials, 90, 62–71.
  • Rea, I., Martucci, N. M., De Stefano, L., Ruggiero, I., Terracciano, M., Dardano, P., Migliaccio, N., Arcari, P., Tate, R., Rendina, I., Lamberti, A. 2014. Diatomite biosilica nanocarriers for siRNA transport inside cancer cells. Biochimica et Biophysica Acta (BBA) - General Subjects, 1840(12), 3393–3403.
  • Sharma, S., Verma, A., Teja, B. V., Pandey, G., Mittapelly, N., Trivedi, R., ve Mishra, P. R. 2015. An insight into functionalized calcium based inorganic nanomaterials in biomedicine: Trends and transitions. Colloids and Surfaces B: Biointerfaces, 133, 120–139.
  • Shi, B., Zhang, H., Bi, J., ve Dai, S. 2014. Endosomal pH responsive polymers for efficient cancer targeted gene therapy. Colloids and Surfaces B: Biointerfaces, 119, 55–65.
  • Shi, J., Xu, Y., Xu, X., Zhu, X., Pridgen, E., Wu, J., Votruba, A. R., Swami, A., Zetter, B. R., Farokhzad, O. C. 2014. Hybrid lipid–polymer nanoparticles for sustained siRNA delivery and gene silencing. Nanomedicine: Nanotechnology, Biology and Medicine, 10(5), 897-900.
  • Siu, K. S., Chen, D., Zheng, X., Zhang, X., Johnston, N., Liu, Y., Yuan, K., Karopatnick, J., Gillies, E. R., Min, W. P. 2014. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials, 35(10), 3435–3442.
  • Suk, J. S., Xu, Q., Kim, N., Hanes, J., ve Ensign, L. M. 2016. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 99, 28–51.
  • Sun, N., Liu, Z., Huang, W., Tian, A., ve Hu, S. 2014. The research of nanoparticles as gene vector for tumor gene therapy. Critical Reviews in Oncology/Hematology, 89(3), 352–357.
  • Tang, S., Huang, Z., Zhang, H., Wang, Y., Hu, Q., ve Jiang, H. 2014. Design and formulation of trimethylated chitosan-graft-poly(ɛ-caprolactone) nanoparticles used for gene delivery. Carbohydrate Polymers, 101, 104–112.
  • Tang, Z., He, C., Tian, H., Ding, J., Hsiao, B. S., Chu, B., ve Chen, X. 2016. Polymeric nanostructured materials for biomedical applications. Progress in Polymer Science, 60, 86–128.
  • Thuy, L. T., Mallick, S., ve Choi, J. S. 2015. Polyamidoamine (PAMAM) dendrimers modified with short oligopeptides for early endosomal escape and enhanced gene delivery. International Journal of Pharmaceutics, 492(1), 233–243.
  • Tiwari, P. M., Eroglu, E., Bawage, S. S., Vig, K., Miller, M. E., Pillai, S., Dennis, V. A., ve Singh, S. R. 2014. Enhanced intracellular translocation and biodistribution of gold nanoparticles functionalized with a cell-penetrating peptide (VG-21) from vesicular stomatitis virus. Biomaterials, 35(35), 9484–9494.
  • Urie, R., ve Rege, K. 2015. Nanoscale inorganic scaffolds as therapeutics and delivery vehicles. Current Opinion in Chemical Engineering, 7, 120–128.
  • Vago, R., Collico, V., Zuppone, S., Prosperi, D., ve Colombo, M. 2016. Nanoparticle-mediated delivery of suicide genes in cancer therapy. Pharmacological Research, 111, 619–641.
  • Vardharajula, S., Ali, S. Z., Tiwari, P. M., Eroğlu, E., Vig, K., Dennis, V. A., ve Singh, S. R. 2012. Functionalized carbon nanotubes: biomedical applications. International journal of nanomedicine, 7, 5361–74.
  • Videira, M., Arranja, A., Rafael, D., ve Gaspar, R. 2014. Preclinical development of siRNA therapeutics: Towards the match between fundamental science and engineered systems. Nanomedicine: Nanotechnology, Biology and Medicine, 10(4), 689–702.
  • Wan, Y., Wu, C., Zuo, G., Xiong, G., Jin, J., Guo, R., Wang, Z., ve Luo, H. 2015. Controlled template synthesis of lamellar hydroxyapatite nanoplates as a potential carrier for gene delivery. Materials Chemistry and Physics, 156, 238–246.
  • Wang, K., Kievit, F. M., ve Zhang, M. 2016. Nanoparticles for cancer gene therapy: Recent advances, challenges, and strategies. Pharmacological Research, 114, 56–66.
  • Wang, Y. 2014. Chapter Five – Composite Nanoparticles for Gene Delivery. Advances in Genetics, 88, 111–137.
  • Xiong, G., Wan, Y., Zuo, G., Ren, K., ve Luo, H. 2015. Self-assembled magnetic lamellar hydroxyapatite as an efficient nano-vector for gene delivery. Current Applied Physics, 15(7), 811–818.
  • Yang, J., Liu, H., ve Zhang, X. 2014. Design, preparation and application of nucleic acid delivery carriers. Biotechnology Advances, 32(4), 804–817.
  • Yang, Y., ve Yu, C. 2016. Advances in silica based nanoparticles for targeted cancer therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 12(2), 317–332.
  • Zanin, H., Hollanda, L. M., Ceragioli, H. J., Ferreira, M. S., Machado, D., Lancellotti, M., Catharino, R. R., Baranauskas, V., ve Lobo, A. O. 2014. Carbon nanoparticles for gene transfection in eukaryotic cell lines. Materials Science and Engineering: C, 39, 359–370.
  • Zhang, J., Li, X., ve Huang, L. 2014. Non-viral nanocarriers for siRNA delivery in breast cancer. Journal of Controlled Release, 190, 440–450.
  • Zhang, J., Sun, X., Shao, R., Liang, W., Gao, J., ve Chen, J. 2015. Polycation liposomes combined with calcium phosphate nanoparticles as a non-viral carrier for siRNA delivery. Journal of Drug Delivery Science and Technology, 30, 1–6.
  • Zhang, R., Zheng, N., Song, Z., Yin, L., ve Cheng, J. 2014. The effect of side-chain functionality and hydrophobicity on the gene delivery capabilities of cationic helical polypeptides. Biomaterials, 35(10), 3443–3454.
  • Zou, L., Song, X., Yi, T., Li, S., Deng, H., Chen, X., Li, Z., Bai, Y., Zhong, Q., Wei, Y., ve Zhao, X. 2013. Administration of PLGA nanoparticles carrying shRNA against focal adhesion kinase and CD44 results in enhanced antitumor effects against ovarian cancer. Cancer Gene Therapy, 20(4), 242–250.
Toplam 102 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşenur Pamukcı Bu kişi benim

Hüseyin Portakal Bu kişi benim

Erdal Eroğlu

Yayımlanma Tarihi 30 Aralık 2018
Yayımlandığı Sayı Yıl 2018

Kaynak Göster

APA Pamukcı, A., Portakal, H., & Eroğlu, E. (2018). Terapötik Moleküllerin Aktarımında Kullanılan Yeni Nesil Biyomalzemeler. Erzincan University Journal of Science and Technology, 11(3), 524-542. https://doi.org/10.18185/erzifbed.339405